已知向量,,函數(shù)
(1)求f(x)的最大值及相應(yīng)的x的值;
(2)若,求的值.
【答案】分析:(1)根據(jù)向量的數(shù)量積的運(yùn)算法則可求得函數(shù)f(x)的解析式,進(jìn)而利用二倍角公式和兩角和公式化簡整理利用正弦函數(shù)的性質(zhì)求得函數(shù)的最大值和相應(yīng)的x的值.
(2)根據(jù)(1)中函數(shù)的解析式和求得兩邊平方利用同角三角函數(shù)的基本關(guān)系和二倍角公式求得sin4θ的值,最后利用誘導(dǎo)公式,把sin4θ的值代入即可.
解答:解:(1)因?yàn)?img src="http://thumb.1010pic.com/pic6/res/gzsx/web/STSource/20131024180758865378323/SYS201310241807588653783015_DA/2.png">,,
所以f(x)=1+sin2x+sin2x-cos2x=1+sin2x-cos2x=
因此,當(dāng),即(k∈Z)時(shí),f(x)取得最大值;

(2)由f(θ)=1+sin2θ-cos2θ及,
兩邊平方得,即
因此,
點(diǎn)評:本題主要考查了利用兩角和公式和二倍角公式化簡求值,誘導(dǎo)公式的運(yùn)用,平面向量的運(yùn)算.考查了學(xué)生綜合運(yùn)用基礎(chǔ)知識的能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2011屆廣東省實(shí)驗(yàn)中學(xué)、華師附中、深圳中學(xué)、廣雅中學(xué)高三上學(xué)期期末數(shù)學(xué)文卷 題型:解答題

(本小題滿分12分)
已知向量,函數(shù) 
(1)求的最小正周期;
(2)若,求的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年安徽省六校教育研究會(huì)高三2月聯(lián)考理科數(shù)學(xué)試卷(解析版) 題型:解答題

已知向量,,函數(shù)

最大值;

中,設(shè)角,的對邊分別為,若,且?,求角的大。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年廣東省廣州市育才中學(xué)高三(上)10月月考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知向量,,函數(shù)
(1)求函數(shù)f(x)的解析式;
(2)當(dāng)x∈[0,π]時(shí),求f(x)的單調(diào)遞增區(qū)間;
(3)說明f(x)的圖象可以由g(x)=sinx的圖象經(jīng)過怎樣的變換而得到.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年浙江省五校高三下學(xué)期第二次聯(lián)考理科數(shù)學(xué)試卷(解析版) 題型:解答題

已知向量,,函數(shù)

(Ⅰ)若方程上有解,求的取值范圍;

(Ⅱ)在中,分別是A,B,C所對的邊,當(dāng)(Ⅰ)中的取最大值且時(shí),求的最小值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年南安一中高一下學(xué)期期末考試數(shù)學(xué)卷 題型:解答題

(本小題滿分12分)

已知向量,,函數(shù)

(1)求函數(shù)的最小正周期以及單調(diào)遞增區(qū)間;

(2)若時(shí), 求的值域;

(3)求方程內(nèi)的所有實(shí)數(shù)根之和.

 

查看答案和解析>>

同步練習(xí)冊答案