【題目】2017年9月,國(guó)務(wù)院發(fā)布了《關(guān)于深化考試招生制度改革的實(shí)施意見(jiàn)》.某地作為高考改革試點(diǎn)地區(qū),從當(dāng)年秋季新入學(xué)的高一學(xué)生開(kāi)始實(shí)施,高考不再分文理科.每個(gè)考生,英語(yǔ)、語(yǔ)文、數(shù)學(xué)三科為必考科目,并從物理、化學(xué)、生物、政治、歷史、地理六個(gè)科目中任選三個(gè)科目參加高考.物理、化學(xué)、生物為自然科學(xué)科目,政治、歷史、地理為社會(huì)科學(xué)科目.假設(shè)某位考生選考這六個(gè)科目的可能性相等.
(1)求他所選考的三個(gè)科目中,至少有一個(gè)自然科學(xué)科目的概率;
(2)已知該考生選考的三個(gè)科目中有一個(gè)科目屬于社會(huì)科學(xué)科目,兩個(gè)科目屬于自然科學(xué)科目.若該考生所選的社會(huì)科學(xué)科目考試的成績(jī)獲等的概率都是0.8,所選的自然科學(xué)科目考試的成績(jī)獲等的概率都是0.75,且所選考的各個(gè)科目考試的成績(jī)相互獨(dú)立.用隨機(jī)變量表示他所選的三個(gè)科目中考試成績(jī)獲等的科目數(shù),求的分布列和數(shù)學(xué)期望.
【答案】(1);(2)見(jiàn)解析.
【解析】試題分析:
(1)由題意結(jié)合對(duì)立事件計(jì)算公式可知該位考生選考的三個(gè)科目中,至少有一個(gè)自然科學(xué)科目的概率為;
(2)由題意可知,隨機(jī)變量的所有可能取值有0, 1,2,3.計(jì)算相應(yīng)的概率值為,,,,據(jù)此可得分布列,然后計(jì)算數(shù)學(xué)期望為.
試題解析:
(1)記“某位考生選考的三個(gè)科目中至少有一個(gè)科目是自然科學(xué)科目”為事件,
則,
所以該位考生選考的三個(gè)科目中,至少有一個(gè)自然科學(xué)科目的概率為.
(2)隨機(jī)變量的所有可能取值有0, 1,2,3.
因?yàn)?/span>,
,
,
,
所以的分布列為
所以.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】橢圓()的左、右焦點(diǎn)分別為,,過(guò)作垂直于軸的直線與橢圓在第一象限交于點(diǎn),若,且.
(Ⅰ)求橢圓的方程;
(Ⅱ),是橢圓上位于直線兩側(cè)的兩點(diǎn).若直線過(guò)點(diǎn),且,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本小題滿(mǎn)分12分)
如圖,已知四棱錐的底面為菱形,且, .
(I)求證:平面 平面;
(II)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知雙曲線=1(a>0,b>0)的右焦點(diǎn)為F(c,0).
(1)若雙曲線的一條漸近線方程為y=x且c=2,求雙曲線的方程;
(2)以原點(diǎn)O為圓心,c為半徑作圓,該圓與雙曲線在第一象限的交點(diǎn)為A,過(guò)A作圓的切線,斜率為-,求雙曲線的離心率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]
在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求曲線的普通方程和曲線的直角坐標(biāo)方程;
(2)若與交于兩點(diǎn),點(diǎn)的極坐標(biāo)為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】私家車(chē)的尾氣排放是造成霧霾天氣的重要因素之一,因此在生活中我們應(yīng)該提倡低碳生活,少開(kāi)私家車(chē),盡量選擇綠色出行方式,為預(yù)防霧霾出一份力.為此,很多城市實(shí)施了機(jī)動(dòng)車(chē)車(chē)尾號(hào)限行,我市某報(bào)社為了解市區(qū)公眾對(duì)“車(chē)輛限行”的態(tài)度,隨機(jī)抽查了人,將調(diào)查情況進(jìn)行整理后制成下表:
年齡(歲) | ||||||
頻數(shù) | ||||||
贊成人數(shù) |
()完成被調(diào)查人員的頻率分布直方圖.
()若從年齡在,的被調(diào)查者中各隨機(jī)選取人進(jìn)行追蹤調(diào)查,求恰有人不贊成的概率.
()在在條件下,再記選中的人中不贊成“車(chē)輛限行”的人數(shù)為,求隨機(jī)變量的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】據(jù)統(tǒng)計(jì)2018年春節(jié)期間微信紅包收發(fā)總量達(dá)到460億個(gè)。收發(fā)紅包成了生活的“調(diào)味劑”。某網(wǎng)絡(luò)運(yùn)營(yíng)商對(duì)甲、乙兩個(gè)品牌各5種型號(hào)的手機(jī)在相同環(huán)境下,對(duì)它們搶到的紅包個(gè)數(shù)進(jìn)行統(tǒng)計(jì),得到如下數(shù)據(jù):
型號(hào) 手機(jī)品牌 | Ⅰ | Ⅱ | Ⅲ | Ⅳ | Ⅴ |
甲品牌(個(gè)) | 4 | 3 | 8 | 6 | 12 |
乙品牌(個(gè)) | 5 | 7 | 9 | 4 | 3 |
(Ⅰ)如果搶到紅包個(gè)數(shù)超過(guò)5個(gè)的手機(jī)型號(hào)為“優(yōu)”,否則“非優(yōu)”,請(qǐng)據(jù)此判斷是否有85%的把握認(rèn)為搶到的紅包個(gè)數(shù)與手機(jī)品牌有關(guān)?
(Ⅱ)如果不考慮其它因素,要從甲品牌的5種型號(hào)中選出2種型號(hào)的手機(jī)進(jìn)行大規(guī)模宣傳銷(xiāo)售.求型號(hào)Ⅰ或型號(hào)Ⅱ被選中的概率.
下面臨界值表供參考:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
參考公式:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn), 軸的正半軸為極軸,以相同的長(zhǎng)度單位建立極坐標(biāo)系,已知直線的極坐標(biāo)方程為,曲線的極坐標(biāo)方程為.
(1)設(shè)為參數(shù),若,求直線的參數(shù)方程;
(2)已知直線與曲線交于,設(shè),且,求實(shí)數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=|2x﹣1|+|2x+3|.
(1)解不等式f(x)≥6;
(2)記f(x)的最小值是m,正實(shí)數(shù)a,b滿(mǎn)足2ab+a+2b=m,求a+2b的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com