【題目】在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,且滿足bcosA=(2c+a)cos(π﹣B)
(1)求角B的大小;
(2)若b=4,△ABC的面積為 ,求a+c的值.
【答案】
(1)解:因?yàn)閎cosA=(2c+a)cos(π﹣B)
所以sinBcosA=(﹣2sinC﹣sinA)cosB
所以sin(A+B)=﹣2sinCcosB
∴cosB=﹣
∴B=
(2)解:由 = 得ac=4.
由余弦定理得b2=a2+c2+ac=(a+c)2﹣ac=16
∴a+c=2
【解析】(1)利用正弦定理化簡bcosA=(2c+a)cos(π﹣B),通過兩角和與差的三角函數(shù)求出cosB,即可得到結(jié)果.(2)利用三角形的面積求出ac=4,通過由余弦定理求解即可.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解正弦定理的定義的相關(guān)知識(shí),掌握正弦定理:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列{an}的前n項(xiàng)和Sn , 且a3=7,S11=143, (Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=2 +2n,求數(shù)列{bn}的前n項(xiàng)和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知長為2的線段A B兩端點(diǎn)A和B分別在x軸和y軸上滑動(dòng),線段AB的中點(diǎn)M的軌跡為曲線C. (Ⅰ)求曲線C的方程;
(Ⅱ)點(diǎn)P(x,y)是曲線C上的動(dòng)點(diǎn),求3x﹣4y的取值范圍;
(Ⅲ)已知定點(diǎn)Q(0, ),探究是否存在定點(diǎn)T(0,t)(t )和常數(shù)λ滿足:對(duì)曲線C上任意一點(diǎn)S,都有|ST|=λ|SQ|成立?若存在,求出t和λ;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知{ an}是一個(gè)公差大于0的等差數(shù)列,且滿足a3a6=55,a2+a7=16.
(1)求數(shù)列{ an}的通項(xiàng)公式;
(2)若數(shù)列{bn}滿足 +…+ =an (n∈N* ) 求數(shù)列{bn}的前n項(xiàng)和Sn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)等差數(shù)列{an}滿足 =1,公差d∈(﹣1,0),當(dāng)且僅當(dāng)n=9時(shí),數(shù)列{an}的前n項(xiàng)和Sn取得最大值,求該數(shù)列首項(xiàng)a1的取值范圍( )
A.( , )
B.[ , ]
C.( , )
D.[ , ]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列不等式中正確的是( )
A.sin π>sin π
B.tan π>tan(﹣ )
C.sin(﹣ )>sin(﹣ )
D.cos(﹣ π)>cos(﹣ π)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在某中學(xué)舉行的物理知識(shí)競賽中,將三個(gè)年級(jí)參賽學(xué)生的成績?cè)谶M(jìn)行整理后分成5組,繪制出如圖所示的頻率分布直方圖,圖中從左到右依次為第一、第二、第三、第四、第五小組.已知第三小組的頻數(shù)是15.
(1)求成績?cè)?0~70分的頻率是多少;
(2)求這三個(gè)年級(jí)參賽學(xué)生的總?cè)藬?shù)是多少;
(3)求成績?cè)?0~100分的學(xué)生人數(shù)是多少.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著我國經(jīng)濟(jì)的發(fā)展,居民的儲(chǔ)蓄存款逐年增長.設(shè)某地區(qū)城鄉(xiāng)居民人民幣儲(chǔ)蓄存款(年底余額)如下表:
年份 | 2010 | 2011 | 2012 | 2013 | 2014 |
時(shí)間代號(hào)t | 1 | 2 | 3 | 4 | 5 |
儲(chǔ)蓄存款y(千億元) | 5 | 6 | 7 | 8 | 10 |
(Ⅰ)求y關(guān)于t的回歸方程 = t+ .
(Ⅱ)用所求回歸方程預(yù)測該地區(qū)2015年(t=6)的人民幣儲(chǔ)蓄存款.
附:回歸方程 = t+ 中
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)y=f(x)的圖象上每一點(diǎn)的縱坐標(biāo)保持不變,橫坐標(biāo)伸長到原來的2倍,再將整個(gè)圖象沿x軸向右平移 個(gè)單位,沿y軸向下平移1個(gè)單位,得到函數(shù)y= sinx的圖象,則y=f(x)的解析式為( )
A.y= sin(2x+ )+1
B.y= sin(2x﹣ )+1
C.y= sin( x+ )+1
D.y= sin( x﹣ )+1
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com