【題目】如圖,A、B、C為⊙O上三點,B為 的中點,P為AC延長線上一點,PQ與⊙O相切于點Q,BQ與AC相交于點D.
(Ⅰ)證明:△DPQ為等腰三角形;
(Ⅱ)若PC=1,AD=PD,求BDQD的值.

【答案】證明:(Ⅰ)連接CQ,BC,AB,
因為PQ是圓O的切線,所以∠PQC=∠CBD,
因為B為 的中點,所以∠CQB=∠ACB,
所以∠PQC+∠CQB=∠CBD+∠ACB,
即∠PQD=∠CDQ,
故△DPQ為等腰三角形.
(Ⅱ)解:設CD=t,則PD=PQ=1+t,PA=2+2t,
由PQ2=PCPA得t=1,
所以CD=1,AD=PD=2,
所以BDQD=CDAD=2.

【解析】(Ⅰ)連接CQ,BC,AB,證明∠PQD=∠CDQ,即可證明PD=PQ;(Ⅱ)利用切割線定理,求出CD=1,AD=PD=2,即可求BDQD.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某研究型學習小組調(diào)查研究高中生使用智能手機對學習的影響,部分統(tǒng)計數(shù)據(jù)如下:

使用智能手機

不使用智能手機

合計

學習成績優(yōu)秀

學習成績不優(yōu)秀

合計

(1)根據(jù)以上統(tǒng)計數(shù)據(jù),你是否有的把握認為使用智能手機對學習有影響?

(2)為進一步了解學生對智能手機的使用習慣,現(xiàn)從全校使用智能手機的高中生中(人數(shù)很多)隨機抽取 人,求抽取的學生中學習成績優(yōu)秀的與不優(yōu)秀的都有的概率.

附:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】執(zhí)行如圖的程序框圖,若輸出的y值為5,則判斷框中可填入的條件是(

A.i<3
B.i<4
C.i<5
D.i<6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】古希臘著名數(shù)學家阿波羅尼斯與歐幾里得、阿基米德齊名.他發(fā)現(xiàn):“平面內(nèi)到兩個定點的距離之比為定值的點的軌跡是圓”.后來,人們將這個圓以他的名字命名,稱為阿波羅尼斯圓,簡稱阿氏圓在平面直角坐標系中,.設點的軌跡為,下列結(jié)論正確的是( )

A. 的方程為

B. 軸上存在異于的兩定點,使得

C. 三點不共線時,射線的平分線

D. 上存在點,使得

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】數(shù)學的發(fā)展推動著科技的進步,正是基于線性代數(shù)、群論等數(shù)學知識的極化碼原理的應用,華為的5G技術領先世界.目前某區(qū)域市場中5G智能終端產(chǎn)品的制造由H公司及G公司提供技術支持據(jù)市場調(diào)研預測,5C商用初期,該區(qū)域市場中采用H公司與G公司技術的智能終端產(chǎn)品分別占比假設兩家公司的技術更新周期一致,且隨著技術優(yōu)勢的體現(xiàn)每次技術更新后,上一周期采用G公司技術的產(chǎn)品中有20%轉(zhuǎn)而采用H公司技術,采用H公司技術的僅有5%轉(zhuǎn)而采用G公司技術設第n次技術更新后,該區(qū)域市場中采用H公司與G公司技術的智能終端產(chǎn)品占比分別為,不考慮其它因素的影響.

(1)用表示,并求實數(shù)使是等比數(shù)列;

(2)經(jīng)過若干次技術更新后該區(qū)域市場采用H公司技術的智能終端產(chǎn)品占比能否達到75%以上?若能,至少需要經(jīng)過幾次技術更新;若不能,說明理由?(參考數(shù)據(jù):)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,邊長為2的正方形所在的平面與半圓弧所在平面垂直,上異于,的點.

(1)證明:平面平面;

(2)當三棱錐體積最大時,求面與面所成二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖四邊形ABCD為菱形,GACBD交點,,

(I)證明:平面平面;

(II)若, 三棱錐的體積為,求該三棱錐的側(cè)面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為比較甲、乙兩地某月11時的氣溫情況,隨機選取該月中的5天中11時的氣溫數(shù)據(jù)(單位:℃)制成如圖所示的莖葉圖,考慮以下結(jié)論:
①甲地該月11時的平均氣溫低于乙地該月11時的平均氣溫
②甲地該月11時的平均氣溫高于乙地該月11時的平均氣溫
③甲地該月11時的氣溫的標準差小于乙地該月11時的氣溫的標準差
④甲地該月11時的氣溫的標準差大于乙地該月11時的氣溫的標準差
其中根據(jù)莖葉圖能得到的正確結(jié)論的編號為(

A.①③
B.①④
C.②③
D.②④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面四邊形ACBD(圖①)中,△ABC與△ABD均為直角三角形且有公共斜邊AB,設AB=2,∠BAD=30°,∠BAC=45°,將△ABC沿AB折起,構(gòu)成如圖②所示的三棱錐C′﹣ABC,且使
(Ⅰ)求證:平面C′AB⊥平面DAB;
(Ⅱ)求二面角A﹣C′D﹣B的余弦值.

查看答案和解析>>

同步練習冊答案