已知m是復(fù)數(shù)z=(
1-i
1+i
2-i(1+2i)的實(shí)部,且n=π2-∫
 
π
0
(sint+2t)dt,求(mx+
1
nx
6的展開式中含n2的項(xiàng)及中間項(xiàng).
考點(diǎn):復(fù)數(shù)代數(shù)形式的乘除運(yùn)算
專題:概率與統(tǒng)計,數(shù)系的擴(kuò)充和復(fù)數(shù)
分析:利用復(fù)數(shù)的運(yùn)算法則、定積分、二項(xiàng)式定理即可得出.
解答: 解:z=
-2i
2i
-(i-2)=1-i,
∴實(shí)不m=1,
n=π2-
π
0
(sint+2t)dt=π2-(cost+t2)
|
π
0
=-2
,
(mx+
1
nx
)6=(x-
1
2x
)6
,
Tr+1=
C
r
6
x6-r(-
1
2x
)r=(-
1
2
)r
C
r
6
x6-2r
,
令6-2r=2,∴r=2,
x2項(xiàng)為T3=(-
1
2
)2
C
2
6
x2=
1
4
•15x2
,
中間項(xiàng)為T3+1=(-
1
2
)3
C
3
6
x0=-
5
2
點(diǎn)評:本題考查了復(fù)數(shù)的運(yùn)算法則、定積分、二項(xiàng)式定理,考查了推理能力與計算能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xoy中,以ox軸為始邊做兩個銳角α,β,它們的終邊分別與單位圓相交于A,B兩點(diǎn),已知點(diǎn)A的橫坐標(biāo)為
2
10
,點(diǎn)B的縱坐標(biāo)為
5
5

(1)求tan(α+β)的值;
(2)求α+2β的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

口袋里裝有2個白球和2個黑球,這4個球除顏色外完全相同,不放回地連續(xù)抽取2次,每次取出1球,計算下列事件的概率:
(1)第一次取出黑球,第二次取出白球;
(2)取出的2球顏色不同;
(3)取出的2球中至少有1個白球.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在2008奧運(yùn)會上兩名射擊運(yùn)動員甲、乙在比賽中打出如下成績:
甲,:8,6,7,8,6,5,9,10,4,7
乙:6,7,7,8,6,7,8,7,9,5,
求出甲乙兩人的平均數(shù)和方差,并分析甲、乙兩人成績.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=x2+2x+5在[t,t+1]t∈R上的最小值為φ(t),求φ(t)的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在矩形ABCD中,AB=
2
,BC=2,點(diǎn)E是BC邊的中點(diǎn),點(diǎn)F在邊CD上.
(1)若O是對角線AC的中點(diǎn),
AO
AE
AD
(λ、μ∈R),求λ+μ的值;
(2)若
AE
BF
=
2
,求線段DF的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=alnx+
1
2
x2-(1+a)x.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若f(x)≥0對定義域中的任意x恒成立,求實(shí)數(shù)a的取值范圍;
(3)證明:對任意正整數(shù)m,n,不等式
1
ln(m+1)
+
1
ln(m+2)
+…+
1
ln(m+n)
n
m(m+n)
恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在(0,3)上的函數(shù)f(x)的圖象如圖所示
a
=(f(x),0),
b
=(cosx,0),那么不等式
a
b
<0的解集是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知F1,F(xiàn)2為橢圓
x2
4
+
y2
3
=1的左、右焦點(diǎn),M為橢圓上動點(diǎn),有以下四個結(jié)論:
①|(zhì)MF2|的最大值大于3;
②|MF1|•|MF2|的最大值為4;
③若過F2作∠F1MF2的外角平分線的垂線,垂足為N,則點(diǎn)N的軌跡方程是x2+y2=4;
④若動直線l垂直y軸,交此橢圓于A、B兩點(diǎn),P為l上滿足|PA|•|PB|=2的點(diǎn),則點(diǎn)P的軌跡方程為
x2
2
+
2y2
3
=1或
x2
6
+
2y2
9
=1.
以上結(jié)論正確的序號為
 

查看答案和解析>>

同步練習(xí)冊答案