已知y=f(x)是定義在R上的奇函數(shù),當(dāng)x≥0時(shí),f(x)=x2-2x.則f(x)在R上的解析式是
A.y=x(x-2)
B.y=x(|x|-2)
C.y=|x|(x-2)
D.y=|x|(|x|-2)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:高三數(shù)學(xué)教學(xué)與測(cè)試 題型:044
已知曲線(xiàn)C的方程是(t+1)+2at)x+3at+b=0,直線(xiàn)l的
方程是y=t(x-1),若對(duì)任意實(shí)數(shù)t,曲線(xiàn)C恒過(guò)定點(diǎn)P(1,0).
(1)求定值a,b;
(2)直線(xiàn)l截曲線(xiàn)C所得弦長(zhǎng)為d,記f(t)=,則當(dāng)t為何值時(shí),f(t)有最大值,最大值是多少?
(3)若點(diǎn)M()在曲線(xiàn)C上,又在直線(xiàn)l上,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2002年全國(guó)各省市高考模擬試題匯編 題型:044
已知:如圖射線(xiàn)OA為y=kx(k>0,x>0),射線(xiàn)OB為y=-kx(x>0),動(dòng)點(diǎn)P(x,y)在∠AOx的內(nèi)部,PM⊥OA于M,PN⊥OB于N,四邊形ONPM的面積恰為k.
(Ⅰ)當(dāng)k為定值時(shí),動(dòng)點(diǎn)P的縱坐標(biāo)y是其橫坐標(biāo)x的函數(shù),求這個(gè)函數(shù)y=f(x)的解析式;
(Ⅱ)根據(jù)k的取值范圍,確定y=f(x)的定義域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:寧夏銀川二中2011屆高三第一次月考數(shù)學(xué)理科試題 題型:022
已知函數(shù)y=f(x)是偶函數(shù),y=g(x)是奇函數(shù),它們的定域[-π,π],且它們?cè)趚∈[0,π]上的圖象如圖所示,則不等式<0的解集是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2012高三數(shù)學(xué)一輪復(fù)習(xí)單元練習(xí)題 函數(shù)與數(shù)列(2) 題型:044
已知f(x)=(x∈R),P1(x1,y1)、P2(x2,y2)是函數(shù)y=f(x)圖象上兩點(diǎn),且線(xiàn)段P1P2中點(diǎn)P的橫坐標(biāo)是.
(1)求證:點(diǎn)P的縱坐標(biāo)是定值;
(2)若數(shù)列{an}的通項(xiàng)公式是an=f()(m∈N*,n=1,2,…m),求數(shù)列{an}的前m項(xiàng)和Sm;
(3)在(2)的條件下,若m∈N*時(shí),不等式恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:湖北省武漢二中08-09學(xué)年高二下學(xué)期期末考試(理) 題型:填空題
已知命題:
①函數(shù)f(x)=在(0, +∞)上是減函數(shù);
②函數(shù)f(x)的定義域?yàn)镽,是x=x0為極值點(diǎn)的既不充分也不必要條件;
③y=f(x-2)的圖象和y=f(2-x)的圖象關(guān)于x=2對(duì)稱(chēng)
④在平面內(nèi), 到定點(diǎn)(2,1)的距離與定直線(xiàn)3x+4y-10=0的距離相等的點(diǎn)的軌跡是拋物線(xiàn);
⑤若, 則(其中);
其中, 正確命題的序號(hào)是 .(把你認(rèn)為正確命題的序號(hào)都填上)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com