在數(shù)列{an}中,a1=4且對(duì)于任意的自然數(shù)n∈N+都有an+1=2(an-n+1)
(I)證明數(shù)列{an-2n}是等比數(shù)列.
(II)求數(shù)列{an}的通項(xiàng)公式及前n項(xiàng)和Sn.
分析:(I)用第n+1項(xiàng)除以第n項(xiàng),將已知等式代入,求出商是常數(shù),利用等比數(shù)列的定義得證.
(II)利用等比數(shù)列的通項(xiàng)公式求出an-2n,求出an,據(jù)an是有一個(gè)等差數(shù)列與一個(gè)等比數(shù)列的和構(gòu)成的,所以利用分組法求出前n項(xiàng)和.
解答:解:(I)∵a
n+1=2(a
n-n+1)
∴
==
=2∴數(shù)列{a
n-2n}是以a
1-2=2為首項(xiàng),以2為公比的等比數(shù)列
(II)由(I)可得
a
n-2n=2•2
n-1=2
n∴a
n=2
n+2n
∴
Sn=+=2
n+1-2+n
2+n
點(diǎn)評(píng):在求數(shù)列的前n項(xiàng)和時(shí),先判斷數(shù)列通項(xiàng)的特點(diǎn),據(jù)特點(diǎn)選擇合適的求和方法.