在平面直角坐標(biāo)系中,圓的參數(shù)方程為,以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系.求:

(1)圓的直角坐標(biāo)方程;

(2)圓的極坐標(biāo)方程.

 

(1).(2)

【解析】

試題分析:(1)根據(jù)消去參數(shù)得圓的直角坐標(biāo)方程:.(2)利用代入,可得圓的極坐標(biāo)方程為

試題解析:【解析】
(1)圓的直角坐標(biāo)方程為. 5分

(2)把代入上述方程,得圓的極坐標(biāo)方程為. 10分

考點(diǎn):參數(shù)方程、極坐標(biāo)方程、直角坐標(biāo)方程之間互化

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年江蘇省高三百校聯(lián)合調(diào)研測(cè)試(一)數(shù)學(xué)試卷(解析版) 題型:填空題

已知正三棱柱底面邊長是2,外接球的表面積是,則該三棱柱的側(cè)棱長 .

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年江蘇省連云港市高三3月第二次調(diào)研考試文科數(shù)學(xué)試卷(解析版) 題型:填空題

如圖,在△ABC中,BO為邊AC上的中線,,設(shè),若,則的值為 .

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年江蘇省蘇錫常鎮(zhèn)四市高三教學(xué)情況調(diào)研二數(shù)學(xué)試卷(解析版) 題型:填空題

在1,2,3,4四個(gè)數(shù)中隨機(jī)地抽取一個(gè)數(shù)記為a,再在剩余的三個(gè)數(shù)中隨機(jī)地抽取一個(gè)數(shù)記為b,則“是整數(shù)”的概率為 .

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年江蘇省蘇錫常鎮(zhèn)四市高三教學(xué)情況調(diào)研二數(shù)學(xué)試卷(解析版) 題型:填空題

設(shè)是虛數(shù)單位),則= .

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年江蘇省蘇、錫、常、鎮(zhèn)四市高三教學(xué)情況調(diào)查(一)理科數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,在平面直角坐標(biāo)系中,已知是橢圓上不同的三點(diǎn),,,在第三象限,線段的中點(diǎn)在直線上.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)求點(diǎn)C的坐標(biāo);

(3)設(shè)動(dòng)點(diǎn)在橢圓上(異于點(diǎn),,)且直線PB,PC分別交直線OA于,兩點(diǎn),證明為定值并求出該定值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年江蘇省蘇、錫、常、鎮(zhèn)四市高三教學(xué)情況調(diào)查(一)理科數(shù)學(xué)試卷(解析版) 題型:填空題

已知正數(shù)滿足,則的最小值為 .

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年江蘇省蘇、錫、常、鎮(zhèn)四市高三教學(xué)情況調(diào)查(一)文科數(shù)學(xué)試卷(解析版) 題型:填空題

在平面直角坐標(biāo)系中,已知點(diǎn)在圓內(nèi),動(dòng)直線過點(diǎn)且交圓兩點(diǎn),若△ABC的面積的最大值為,則實(shí)數(shù)的取值范圍為 .

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年江蘇省淮安市高三5月信息卷理科數(shù)學(xué)試卷(解析版) 題型:解答題

某超市在節(jié)日期間進(jìn)行有獎(jiǎng)促銷,規(guī)定凡在該超市購物滿400元的顧客,均可獲得一次摸獎(jiǎng)機(jī)會(huì).摸獎(jiǎng)規(guī)則如下:

獎(jiǎng)盒中放有除顏色不同外其余完全相同的4個(gè)球(紅、黃、黑、白).顧客不放回的每次摸出1個(gè)球,若摸到黑球則摸獎(jiǎng)停止,否則就繼續(xù)摸球.按規(guī)定摸到紅球獎(jiǎng)勵(lì)20元,摸到白球或黃球獎(jiǎng)勵(lì)10元,摸到黑球不獎(jiǎng)勵(lì).

(1)求1名顧客摸球2次摸獎(jiǎng)停止的概率;

(2)記為1名顧客摸獎(jiǎng)獲得的獎(jiǎng)金數(shù)額,求隨機(jī)變量的分布列和數(shù)學(xué)期望.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案