已知定義在[1,+∞)上的函數(shù)f(x)=
4-8|x-
3
2
|,1≤x≤2
1
2
f(
x
2
),x>2
,給出下列結(jié)論:
①函數(shù)f(x)的值域為[0,4];
②關(guān)于x的方程f(x)=
1
2
有6個不相等的實根;
③當(dāng)x∈[1,2]時,函數(shù)f(x)的圖象與x軸圍成的圖形的面積為S,則S=2;
④存在x0∈[1,8],使得不等式x0f(x0)>6成立.
其中你認為正確的所有結(jié)論的序號為______.
當(dāng)1≤x≤
3
2
時,f(x)=4+8(x-
3
2
)
=8x-8;當(dāng)
3
2
<x≤2
時,f(x)=4-8(x-
3
2
)
=-8x+16.
當(dāng)2<x≤3時,1<
x
2
3
2
,f(x)=
1
2
f(
x
2
)
=
1
2
(8×
x
2
-8)
=2x-4;
當(dāng)3<x≤4時,
3
2
x
2
≤2
,f(x)=
1
2
(-8×
x
2
+16)
=-2x+8.
當(dāng)4<x≤6時,2<
x
2
≤3
,f(x)=
1
2
(2×
x
2
-4)
=
1
2
x-2
;
當(dāng)6<x≤8時,3<
x
2
≤4
,f(x)=
1
2
(-2×
x
2
+8)
=-
1
2
x+4
.….
畫出函數(shù)f(x)的圖象:
由圖象可知:
①函數(shù)f(x)的值域為[0,4],正確;
②關(guān)于x的方程f(x)=
1
2
有7個不相等的實根,因此②不正確;
③當(dāng)x∈[1,2]時,函數(shù)f(x)的圖象與x軸圍成的圖形的面積為S,則S=
1
2
×1×4
=2,正確;
④畫出函數(shù)y=
6
x
(x>0)
的圖象,可知與函數(shù)y=f(x)有交點,
如x=
3
2
,3,6等,因此不存在x0∈[1,8],使得不等式f(x0)>
6
x0
即x0f(x0)>6成立,因此正確.
綜上可知:①③④正確.
故答案為:①③④.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知命題p:x2-5x-6≤0;命題q:-x2+2x+8≤0.若“p∨q”為真命題且“p∧q”為假命題,求實數(shù)x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

下列命題中:①、若m>0,則方程x2-x+m=0有實根.②、若x>1,y>1,則x+y>2的逆命題.③、對任意的x∈{x|-2<x<4},|x-2|<3的否定形式.④、△>0是一元二次方程ax2+bx+c=0有一正根和一負根的充要條件.是真命題的有______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知a,b,c∈R,下列四個命題:
(1)若a>b則ac2>bc2
(2)若
a
c
b
c
則a>b
(3)若a>b則a2>b2
(4)若a>b則
1
b
1
a

其中正確的個數(shù)是( 。
A.0個B.1個C.2個D.3個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

給出下列命題:
①若ab>0,a>b,則
1
a
1
b
;
②若a>|b|,則a2>b2
③若a>b,c>d,則a-c>b-d;
④若a<b,m>0,則
a
b
a+m
b+m

其中真命題的序號是:______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

給出下列語句:
①二次函數(shù)是偶函數(shù)嗎?
②2>2;
sin
π
2
=1
;
④x2-4x+4=0.
其中是命題的有(  )
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

記命題p為“若α=β,則cosα=cosβ”,則在命題p及其逆命題、否命題、逆否命題中,真命題的個數(shù)是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

下列命題:
①直線y=2x在x,y軸上的截距相等;
②直線ax+2y=1與直線x+y=0平行的充要條件是a=2;
③世界上第一個把π計算到3.1415926<π<3.1415927的是中國人祖沖之;
④拋兩枚均勻的骰子,恰好出現(xiàn)一奇一偶的概率為
1
4
;
⑤滿足||PF1|-|PF2||=2a(a>0)的動點P的軌跡是雙曲線;
⑥設(shè)P(x、y)是曲線
x2
25
+
y2
9
=1
上的點,F(xiàn)1(-4,0),F(xiàn)2(4,0),則必有|PF1|+|PF2|<10.
其中錯誤的命題序號是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在下列命題中:
①若
a
、
b
共線,則
a
b
所在的直線平行;
②若
a
、
b
所在的直線是異面直線,則
a
、
b
一定不共面;
③若
a
、
b
、
c
三向量兩兩共面,則
a
b
、
c
三向量一定也共面;
④已知三向量
a
、
b
c
,則空間任意一個向量
p
總可以唯一表示為
p
=x
a
+y
b
+z
c

其中真命題的個數(shù)為(  )
A.0B.1C.2D.3

查看答案和解析>>

同步練習(xí)冊答案