考點:數(shù)列的求和
專題:點列、遞歸數(shù)列與數(shù)學(xué)歸納法
分析:由4Sn=(an+1)2,得4Sn+1=(an+1+1)2,兩者作差,研究{an}的相鄰項的關(guān)系,由此關(guān)系求其通項即可.
解答:
解:由題設(shè)條件知4S
n=(a
n+1)
2,
得4S
n+1=(a
n+1+1)
2,兩者作差,得4a
n+1=(a
n+1+1)
2-(a
n+1)
2.
整理得(a
n+1-1)
2=(a
n+1)
2.
又?jǐn)?shù)列{a
n}各項均為正數(shù),
所以a
n+1-1=a
n+1,即a
n+1=a
n+2,
故數(shù)列{a
n}是等差數(shù)列,公差為2,
又4S
1=4a
1=(a
1+1)
2,解得a
1=1,
故有a
n=2n-1,
則S
n=
(a
n+1)
2=S
n=
(2n-1+1)
2=n
2(n∈N
*),
則S
n+n=n+n
2=n(n+1),
則
=
=
-
,.
則T
n=1-
+-+…+
-
=1-
,
若T
n>
,則1-
>
,即
<
,
則n+1>10,n>9,
則n的最小值為10,
故選:C
點評:本題考查數(shù)列求和,求解的關(guān)鍵是根據(jù)其通項的形式將其項分為兩項的差,采用裂項求和的技巧.