分析 (Ⅰ)先利用輔助角公式或二倍角和兩角和余差的基本公式將函數(shù)化為y=Asin(ωx+φ)的形式,再利用周期公式求函數(shù)的最小正周期,最后將內(nèi)層函數(shù)看作整體,放到正弦函數(shù)的減區(qū)間上,解不等式得函數(shù)的單調(diào)遞減區(qū)間;
(Ⅱ)x在[-$\frac{π}{6},\frac{π}{4}$]上,求出內(nèi)層函數(shù)的取值范圍,結(jié)合三角函數(shù)的圖象和性質(zhì),求出f(x)的取值最大和最小值,即得到f(x)的取值范圍.
解答 解:函數(shù)f(x)=4cosxsin(x+$\frac{π}{6}$)-1
化簡可得:f(x)=4cosxsinxcos$\frac{π}{6}$+4cosx•cosxsin$\frac{π}{6}$-1=$2\sqrt{3}$sinxcosx+2cos2x-1=$\sqrt{3}$sin2x+cos2x=2sin(2x+$\frac{π}{6}$)
(Ⅰ)f(x)的周期T=$\frac{2π}{ω}=\frac{2π}{2}=π$.
令2kπ$+\frac{π}{2}$≤2x$+\frac{π}{6}$≤2kπ+$\frac{3π}{2}$,解得:kπ$+\frac{π}{6}$≤x≤kπ+$\frac{2π}{3}$,(k∈Z);
∴f(x)的單調(diào)遞增區(qū)間為[kπ$+\frac{π}{6}$,kπ+$\frac{2π}{3}$](k∈Z);
(Ⅱ):x在[-$\frac{π}{6},\frac{π}{4}$]上,
∴2x$+\frac{π}{6}$∈[-$\frac{π}{6}$,$\frac{2π}{3}$],
可得:sin(2x+$\frac{π}{6}$)∈[$-\frac{1}{2}$,1].
故f(x)∈[-1,2],
∴f(x)在區(qū)間[-$\frac{π}{6},\frac{π}{4}$]上的取值范圍是[-1,2].
點(diǎn)評(píng) 本題主要考查對(duì)三角函數(shù)的化簡能力和三角函數(shù)的圖象和性質(zhì)的運(yùn)用,利用三角函數(shù)公式將函數(shù)進(jìn)行化簡是解決本題的關(guān)鍵.屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=log${\;}_{\frac{1}{2}}$x | B. | y=x-1 | C. | y=($\frac{1}{2}$)x | D. | y=x2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $y=3sin({2x-\frac{π}{6}})$ | B. | $y=3sin({2x-\frac{π}{3}})$ | C. | $y=3sin({x-\frac{π}{6}})$ | D. | $y=3sin({x-\frac{π}{3}})$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com