8.已知函數(shù)f(x)=x2+alnx.
(1)當(dāng)a=-2時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若函數(shù)g(x)=f(x)+$\frac{2}{x}$在[1,3]上是減函數(shù),求實(shí)數(shù)a的取值范圍.

分析 (1)當(dāng)a=-2時(shí),我們易得到函數(shù)的解析式,進(jìn)而求出函數(shù)的導(dǎo)函數(shù),列表討論導(dǎo)函數(shù)的符號(hào),即可得到函數(shù)f(x)的單調(diào)區(qū)間;
(2)若函數(shù)g(x)在[1,3]上是減函數(shù),則g'(x)≤0在[1,3]上恒成立,由此轉(zhuǎn)化為函數(shù)恒成立問題,并轉(zhuǎn)化為a的不等式,解不等式即可得到實(shí)數(shù)a的取值范圍.

解答 解:(1)函數(shù)f(x)的定義域?yàn)椋?,+∞),
當(dāng)a=-2時(shí),f(x)=x2-2lnx,
∴f′(x)=2x-$\frac{2}{x}$=$\frac{2(x+1)(x-1)}{x}$
當(dāng)x變化時(shí),f'(x),f(x)的變化情況如下:

x(0,1)1(1,+∞)
f'(x)-0+
f(x)極小值
由上表可知,函數(shù)f(x)在(0,1)上單調(diào)遞減,在(1,+∞)上單調(diào)遞增,
(2)由數(shù)g(x)=f(x)+$\frac{2}{x}$在[1,3]上是減函數(shù).
∴g′(x)=2x+$\frac{a}{x}$-$\frac{2}{{x}^{2}}$,
∴g'(x)≤0在[1,3]上恒成立,
∴不等式2x+$\frac{a}{x}$-$\frac{2}{{x}^{2}}$≤0在[1,3]上恒成立.
即a≤$\frac{2}{x}$-2x2,在[1,3]上恒成立,
令h(x)=$\frac{2}{x}$-2x2,
∴h′(x)=-$\frac{2}{{x}^{2}}$-4x<0,在[1,3]上恒成立,
∴h(x)在[1,3]為減函數(shù),
∴h(x)min=$\frac{2}{3}$-18=-$\frac{52}{3}$
∴a≤-$\frac{52}{3}$

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,函數(shù)的單調(diào)性與導(dǎo)數(shù)的關(guān)系,其中根據(jù)原函數(shù)的解析式,求出導(dǎo)函數(shù)的解析式是解答本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知函數(shù)f(x)=x3-6x2+12x+a(a∈R),則函數(shù)f(x)的極值點(diǎn)的個(gè)數(shù)為( 。
A.0B.1
C.2D.與實(shí)數(shù)a的取值有關(guān)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.設(shè)函數(shù)f(x)=-x3+3x+2分別在x1、x2處取得極小值、極大值.xOy平面上點(diǎn)A、B的坐標(biāo)分別為(x1,f(x1))、(x2,f(x2)),該平面上動(dòng)點(diǎn)P滿足$\overrightarrow{PA}$•$\overrightarrow{PB}$=4.求:
(1)求點(diǎn)A、B的坐標(biāo);
(2)求動(dòng)點(diǎn)P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=$\frac{1}{2}{x^2}$-5x+4lnx.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)求函數(shù)f(x)的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.某校在高二文理分科時(shí),隨機(jī)調(diào)查了該校高二的一些學(xué)生,得到數(shù)據(jù)如表:
文科理科
數(shù)學(xué)優(yōu)秀1013
數(shù)學(xué)不優(yōu)秀207
為了檢驗(yàn)科類與數(shù)學(xué)是否優(yōu)秀有關(guān)系,根據(jù)表中的數(shù)據(jù),得到K2≈4.84.因?yàn)镵2>3.841,所以斷定科類與數(shù)學(xué)是否優(yōu)秀有關(guān)系,這種判斷出錯(cuò)的概率不超過0.05.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.某商場(chǎng)銷售某種商品的經(jīng)驗(yàn)表明,該商品每日的銷售量y(單位:千克)與銷售價(jià)格x(單位:元/千克)滿足關(guān)系式y(tǒng)=$\frac{a}{x-4}$+10(x-7)2.其中3<x<7,a為常數(shù).已知銷售價(jià)格為6元/千克時(shí),每日可售出該商品11千克.
(Ⅰ)求a的值;
(Ⅱ)若該商品的成本為4元/千克,試確定銷售價(jià)格x(單位:元/千克)的值,使商場(chǎng)每日銷售該商品所獲得的利潤最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知圓M:x2+y2-4x-8y+4=0,若點(diǎn)P是直線3x+4y+8=0上的動(dòng)點(diǎn),過點(diǎn)P作直線PA、PB與圓M相切,A、B為切點(diǎn).則四邊形PAMB面積的最小值為(  )
A.8$\sqrt{5}$B.4$\sqrt{5}$C.12D.24

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.電動(dòng)自行車的耗電量y與速度x的關(guān)系為y=$\frac{1}{3}{x^3}-\frac{39}{2}{x^2}$-40x(x>0),為使耗電量最小,則速度應(yīng)為( 。
A.45B.40C.35D.30

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知二次函數(shù)f(x)=ax2-bx+2(a>0)
(1)若不等式f(x)>0的解集為{x|x>2或x<1},求a和b的值;
(2)若b=2a+1,
①解關(guān)于x的不等式f(x)≤0;
②若對(duì)任意a∈[1,2],f(x)>0恒成立,求x的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案