某商場(chǎng)銷(xiāo)售某種商品的經(jīng)驗(yàn)表明,該商品每日的銷(xiāo)售量y(單位:千克)與銷(xiāo)售價(jià)格x (單位:元/千克)滿足關(guān)系式y(tǒng)=+10(x-6)2,(其中3<x<6,為常數(shù),)已知銷(xiāo)售價(jià)格為5元/千克時(shí),每日可售出該商品11千克。
(I)求的值;
(II)若該商品的成品為3元/千克,試確定銷(xiāo)售價(jià)格x的值,使商場(chǎng)每日銷(xiāo)售該商品所獲得的利潤(rùn)最大。

(I)(II)當(dāng)x=4時(shí),函數(shù)取得最大值,且最大值等于42。

解析試題分析:(I)因?yàn)閤=5時(shí),y=11,所以         (4分)
(II)由(I)可知,該商品每日的銷(xiāo)售量
所以商場(chǎng)每日銷(xiāo)售該商品所獲得的利潤(rùn)

從而, (8分)
于是,當(dāng)x變化時(shí),的變化情況如下表:

由上表可得,x=4是函數(shù)在區(qū)間(3,6)內(nèi)的極大值點(diǎn),也是最大值點(diǎn); (11分)
所以,當(dāng)x=4時(shí),函數(shù)取得最大值,且最大值等于42。  (12)分
考點(diǎn):函數(shù)模型,利用導(dǎo)數(shù)研究函數(shù)的最值,均值定理的應(yīng)用。
點(diǎn)評(píng):中檔題,函數(shù)應(yīng)用問(wèn)題,在高考題中常常出現(xiàn),一般的,需要“審清題意,設(shè)出變量,構(gòu)建函數(shù)模型,解決數(shù)學(xué)問(wèn)題”。求最值時(shí) ,可利用均值定理,有時(shí)也可利用導(dǎo)數(shù)。應(yīng)用均值定理,注意“一正,二定,三相等”,缺一不可。本題利用導(dǎo)數(shù)“表解法”,清晰明了。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)對(duì)于任意的滿足.
(1)求的值;
(2)求證:為偶函數(shù);
(3)若上是增函數(shù),解不等式

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)f(x)=lg(ax-bx)(a>1>b>0).
(1)求y=f(x)的定義域;
(2)在函數(shù)y=f(x)的圖象上是否存在不同的兩點(diǎn),使得過(guò)這兩點(diǎn)的直線平行于x軸;
(3)當(dāng)a,b滿足什么條件時(shí),f(x)在(1,+∞)上恒取正值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

某人2002年底花100萬(wàn)元買(mǎi)了一套住房,其中首付30萬(wàn)元,70萬(wàn)元采用商業(yè)貸款.貸款的月利率為5‰,按復(fù)利計(jì)算,每月等額還貸一次,10年還清,并從貸款后的次月開(kāi)始還貸.
(1)這個(gè)人每月應(yīng)還貸多少元?
(2)為了抑制高房?jī)r(jià),國(guó)家出臺(tái)“國(guó)五條”,要求賣(mài)房時(shí)按照差額的20%繳稅.如果這個(gè)人現(xiàn)在將住房150萬(wàn)元賣(mài)出,并且差額稅由賣(mài)房人承擔(dān),問(wèn):賣(mài)房人將獲利約多少元?(參考數(shù)據(jù):(1+0.005)120≈1.8)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)為x,y正實(shí)數(shù),且2x+5y=20,求的最大值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

江蘇某地區(qū)要建造一條防洪堤,其橫斷面為等腰梯形,腰與底邊成角為(如圖),考慮到防洪堤堅(jiān)固性及石塊用料等因素,設(shè)計(jì)其橫斷面要求面積為平方米,且高度不低于米,設(shè)防洪堤橫斷面的腰長(zhǎng)為米,外周長(zhǎng)(梯形的上底線段BC與兩腰長(zhǎng)的和)為米.

(1)求關(guān)于的函數(shù)關(guān)系式,并指出其定義域;
(2)要使防洪提的橫斷面的外周長(zhǎng)不超過(guò)10.5米,則其腰長(zhǎng)應(yīng)在什么范圍內(nèi)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖所示,校園內(nèi)計(jì)劃修建一個(gè)矩形花壇并在花壇內(nèi)裝置兩個(gè)相同的噴水器。已知噴水器的噴水區(qū)域是半徑為5m的圓。問(wèn)如何設(shè)計(jì)花壇的尺寸和兩個(gè)噴水器的位置,才能使花壇的面積最大且能全部噴到水?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)函數(shù) 
(Ⅰ)若在點(diǎn)處的切線與軸和直線圍成的三角形面積等于,求的值;
(Ⅱ)當(dāng)時(shí),討論的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

統(tǒng)計(jì)表明,某種型號(hào)的汽車(chē)在勻速行駛中每小時(shí)的耗油量(升)關(guān)于行駛速度(千米/小時(shí))的函數(shù)解析式可以表示為:已知甲、乙兩地相距100千米.
(1)當(dāng)汽車(chē)以40千米/小時(shí)的速度勻速行駛時(shí),從甲地到乙地要耗油多少升?
(2)當(dāng)汽車(chē)以多大的速度勻速行駛時(shí),從甲地到乙地耗油最少?最少為多少升?

查看答案和解析>>

同步練習(xí)冊(cè)答案