在梯形ABCD中,AB∥CD,AD=DC=CB=1,∠ABC=60°,四邊形ACFE為矩形,平面ACFE⊥平面ABCD,CF=1.
(1)設(shè)G為AB上一點(diǎn),且平面ADE∥平CFG,求AG長;
(2)求證:平面BCF⊥平面ACFE;
(3)點(diǎn)M在線段EF上運(yùn)動(dòng),設(shè)平面MAB與平面FCB所成二面角的平面角為(≤90°),試求cos的取值范圍.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
AB |
a |
AD |
b |
MN |
a |
b |
n |
m |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:高中新教材同步教學(xué)·高一數(shù)學(xué) 題型:013
如圖,在梯形ABCD中,=a,=b,=c,=d,E、F分別為AB、CD的中點(diǎn),則下列表達(dá)中成立的是
[ ]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:013
如圖,在梯形ABCD中,=a,=b,=c,=d,E、F分別為AB、CD的中點(diǎn),則下列表達(dá)中成立的是
[ ]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
A.=(a+b+c+d) B.=(c+d-a-b)
C.=(a+b-c-d) D.=(a-b+c-d)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com