設(shè)x>0,y>0,z>0,
(Ⅰ)比較的大小;
(Ⅱ)利用(Ⅰ)的結(jié)論,證明:
【答案】分析:(Ⅰ)對兩個解析式作差,對差的形式進行化簡整理,判斷出差的符號,得出兩數(shù)的大。
(Ⅱ)利用(Ⅰ)類比出一個結(jié)論,利用綜合法證明不等式即可.
解答:(Ⅰ)∵,∴.(5分)
(Ⅱ)由(1)得
類似的,,(7分)
;
∴x2+y2+z2≥xy+yz+zx(9分)(另證:x2+y2≥2xy,y2+z2≥2yz,z2+x2≥2zx,三式相加).
=(12分)
點評:本題考查綜合法與分析法,解題的關(guān)鍵是根據(jù)(I)類比出一個條件作為證明的前提.再利用綜合法證明,正確理解綜合法與分析法的原理與作用,順利解題很關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x>0,y>0,z>0,求證:
x2+xy+y2
+
y2+yz+z2
>x+y+z.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x>0,y>0,z>0,且x2+y2+z2=1.
(Ⅰ)求證:xy+yz+xz≤1;   
(Ⅱ)求(
yz
x
+
xz
y
+
xy
z
2的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x>0,y>0,z>0.
(Ⅰ)利用作差法比較
x2
x+y
3x-y
4
的大;
(Ⅱ)求證:x2+y2+z2≥xy+yz+zx;
(Ⅲ)利用(Ⅰ)(Ⅱ)的結(jié)論,證明:
x3
x+y
+
y3
y+z
+
z3
z+x
xy+yz+zx
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x>0,y>0,z>0,
(Ⅰ)比較
x2
x+y
3x-y
4
的大小;
(Ⅱ)利用(Ⅰ)的結(jié)論,證明:
x3
x+y
+
y3
y+z
+
z3
z+x
xy+yz+zx
2

查看答案和解析>>

同步練習(xí)冊答案