11.在△ABC中,內(nèi)角A,B,C所對的邊分別為a,b,c,已知$acosC+\sqrt{3}asinC-b-c=0$.
(1)求角A的大。
(2)若a=7,b+c=11,求△ABC的面積.

分析 (1)由正弦定理化簡已知的式子,由內(nèi)角和定理、誘導(dǎo)公式、兩角和差的正弦公式化簡后,由內(nèi)角的范圍和特殊角的三角函數(shù)值求出A;
(2)由(1)和余弦定理列出方程,代入數(shù)據(jù)求出bc的值,由三角形的面積公式求出答案.

解答 解:(1)由acos C+$\sqrt{3}$asin C-b-c=0和正弦定理得,
sin Acos C+$\sqrt{3}$sin Asin C-sin B-sin C=0.
因為B=π-A-C,
所以sin Acos C+$\sqrt{3}$sin Asin C-sin(A+C)-sin C=0.
化簡得,$\sqrt{3}$sin Asin C-cos Asin C-sin C=0,
由于sin C≠0,所以$\sqrt{3}$sin A-cosA=1,
所以$sin(A-\frac{π}{6})=\frac{1}{2}$,
又0<A<π,故A=$\frac{π}{3}$.…(5分)
(2)由(1)和余弦定理得,
a2=b2+c2-2bccosA=(b+c)2-3bc,
因為a=7,b+c=11,所以bc=24,
所以△ABC的面積:
$S=\frac{1}{2}bcsinA=\frac{1}{2}×24×\frac{\sqrt{3}}{2}=6\sqrt{3}$…(10分)

點評 本題考查了正弦定理、余弦定理,三角形的面積公式,以及兩角和差的正弦公式等,注意內(nèi)角的范圍,考查化簡、變形能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知向量$\overrightarrow a$與$\overrightarrow b$的夾角為120°,且$\overrightarrow a=(-2,-6)$,$|\overrightarrow b|=\sqrt{10}$,則$\overrightarrow a•\overrightarrow b$=-10.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.一元二次方程x2=4x的根是( 。
A.4B.±2C.0或2D.0或4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.給出如圖的一個算法的程序框圖,則輸出S的值是( 。
A.15B.31C.63D.32

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.在平面直角坐標(biāo)系xOy中,橢圓E:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}=1$(a>b>0)的離心率為$\frac{\sqrt{3}}{2}$,橢圓E的頂點四邊形的面積為16.
(Ⅰ)求橢圓E的方程;
(Ⅱ)過橢圓E的頂點P(0,b)的直線l交橢圓于另一點M,交x軸于點N,若|PN|、|PM|、|MN|成等比數(shù)列,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.復(fù)數(shù)z=a2-2+(3a-4)i(a∈R)的實部與虛部相等,且z在復(fù)平面上對應(yīng)的點在第三象限,則a=( 。
A.1B.2C.1或2D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.等比數(shù)列{an}中,公比為2,前四項和等于1,則前8項和等于17.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.?dāng)?shù)列2,5,10,17,…的一個通項公式為( 。
A.2nB.n2+nC.2n-1D.n2+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.圓${C_1}:{({x-1})^2}+{y^2}=1$與圓${C_2}:{({x+3})^2}+{({y-2})^2}=4$的位置關(guān)系是( 。
A.內(nèi)切B.外切C.相交D.相離

查看答案和解析>>

同步練習(xí)冊答案