直線l1:y=mx+1,直線l2的方向向量為
a
=(1,2),且l1⊥l2,則m=______.
∵直線l2的方向向量為
a
 =(1,2)

∴直線l2的斜率為2
∵直線l1:y=mx+1
∴直線l1的斜率為m
∵l1⊥l2
∴2m=-1
m=-
1
2

故答案為-
1
2
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

直線l1:y=mx+1,直線l2的方向向量為
a
=(1,2),且l1⊥l2,則m=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知|m|<1,直線l1:y=mx+1,l2:x=-my+1,l1與l2相交于點P,l1交y軸于點A,l2交x軸于點B
(1)證明:l1⊥l2;
(2)用m表示四邊形OAPB的面積S,并求出S的最大值;
(3)設(shè)S=f(m),求U=S+
1S
的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線的中心在原點O,其中一條準(zhǔn)線方程為x=
3
2
,且與橢圓
x2
25
+
y2
13
=1
有共同的焦點.
(1)求此雙曲線的標(biāo)準(zhǔn)方程;
(2)(普通中學(xué)學(xué)生做)設(shè)直線L:y=kx+3與雙曲線交于A、B兩點,試問:是否存在實數(shù)k,使得以弦AB為直徑的圓過點O?若存在,求出k的值,若不存在,請說明理由.
(重點中學(xué)學(xué)生做)設(shè)直線L:y=kx+3與雙曲線交于A、B兩點,C是直線L1:y=mx+6上任一點(A、B、C三點不共線)試問:是否存在實數(shù)k,使得△ABC是以AB為底邊的等腰三角形?若存在,求出k的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線l1:y=mx+1,直線l2的方向向量為
a
=(1,2),且l1⊥l2,則m=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2005-2006學(xué)年浙江省溫州市高二(上)期末數(shù)學(xué)試卷(解析版) 題型:解答題

已知雙曲線的中心在原點O,其中一條準(zhǔn)線方程為,且與橢圓有共同的焦點.
(1)求此雙曲線的標(biāo)準(zhǔn)方程;
(2)(普通中學(xué)學(xué)生做)設(shè)直線L:y=kx+3與雙曲線交于A、B兩點,試問:是否存在實數(shù)k,使得以弦AB為直徑的圓過點O?若存在,求出k的值,若不存在,請說明理由.
(重點中學(xué)學(xué)生做)設(shè)直線L:y=kx+3與雙曲線交于A、B兩點,C是直線L1:y=mx+6上任一點(A、B、C三點不共線)試問:是否存在實數(shù)k,使得△ABC是以AB為底邊的等腰三角形?若存在,求出k的值,若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案