在△ABC中,角A,B,C的對邊分別為a,b,c,且滿足bsinA=
3
acosB.
(1)求角B的大。
(2)求y=2sin2A+cos(
3
-2A)取最大值時角A的大。
考點:正弦定理,三角函數(shù)中的恒等變換應用
專題:解三角形
分析:(1)先利用正弦定理把已知等式中的邊轉(zhuǎn)換成角的正弦,化簡整理可求得tanB的值,進而求得B.
(2)利用二倍角公式和兩角和公式對函數(shù)解析式化簡,進而利用(1)中B的值,確定A的范圍,進而利用三角函數(shù)的性質(zhì)求得函數(shù)的最大值.
解答: 解:(1)由bsinA=
3
acosB及正弦定理得sinBsinA=
3
sinAsinB,
∵0<A<π,
∴sinA≠0,
∴sinB=
3
cosB,
即tanB=
3

∵0<B<π,
∴B=
π
3

(2)y=2sin2A+cos(
3
-2A)=1-cos2A-
1
2
cos2A+
3
2
sin2A=
3
2
sin2A-
3
2
cos2A+1=
3
sin(2A-
π
3
)+1,
∵B=
π
3
,
∴0<A<
3
,
∴-
π
3
<2A-
π
3
<π,
∴當2A-
π
3
=
π
2
時,即A=
12
時,y有最大值
3
+1.
點評:本題主要考查了正弦定理的運用,三角函數(shù)恒等變換的應用.考查了學生綜合素質(zhì).
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

設變量x,y滿足約束條件
2x+y-2≥0
x-2y+4≥0
x-m≤0
,則“m≥2”是“目標函數(shù)z=3x-2y的最大值不小于5”的(  )
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

P為函數(shù)y=ex圖象上的點,則點P到直線y=x的最短距離為( 。
A、1
B、
2
C、
2
2
D、
1
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知{an}為等比數(shù)列,公比為q,若a2•a3=2a1,且a4與2a7的等差中項為
5
4
,則q=( 。
A、
1
4
B、
1
2
C、2
D、4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

為了調(diào)查我市在校中學生參加體育運動的情況,從中隨機抽取了16名男同學和14名女同學,調(diào)查發(fā)現(xiàn),男、女同學中分別有12人和6人喜愛運動,其余不喜愛.   
(1)根據(jù)以上數(shù)據(jù)完成以下2×2列聯(lián)表:
喜愛運動 不喜愛運動 總計
16
14
總計 30
(2)根據(jù)列聯(lián)表的獨立性檢驗,能否在犯錯誤的概率不超過0.010的前提下認為性別與喜愛運動有關(guān)?
(3)將以上統(tǒng)計結(jié)果中的頻率視作概率,從我市中學生中隨機抽取3人,若其中喜愛運動的人數(shù)為ξ,求ξ的分布列和均值.參考數(shù)據(jù):
P(K2≥k0 0.40 0.25 0.10 0.010
k0 0.708 1.323 2.706 6.635

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

等差數(shù)列{an}中,d<0,若|a3|=|a9|,的前n項和取最大值時,n的值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的各項均為正數(shù),記A(n)=a1+a2+…+an,B(n)=a2+a3+…+an+1,C(n)=a3+a4+…+an+2,其中n∈N*
(1)若a1=1,a2=5,且對任意n∈N*,三個數(shù)A(n),B(n),C(n)依次組成等差數(shù)列,求數(shù)列{an}的通項公式.
(2)a1=1,對任意n∈N*,三個數(shù)A(n),B(n),C(n)依次組成公比為q的等比數(shù)列.求數(shù)列{an}的前n項和An公式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,已知三邊a、b、c成等比數(shù)列.
(Ⅰ)求角B的最大值;
(Ⅱ)若B=
π
4
,求sin(2A-
π
4
)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知曲線C的參數(shù)方程為
x=cosα
y=1+sinα
(α為參數(shù),-
π
2
≤α≤
π
2
),以原點為極點,x軸正半軸為極軸建立極坐標系,直線l的極坐標方程為ρsinθ=1,(ρ≥0,0≤θ<2π)則直線l與圓C的交點的極坐標為
 

查看答案和解析>>

同步練習冊答案