【題目】已知橢圓C的右焦點(diǎn)F(1,0),過(guò)F的直線l與橢圓C交于A,B兩點(diǎn),當(dāng)l垂直于x軸時(shí),|AB|=3.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)在x軸上是否存在點(diǎn)T,使得 為定值?若存在,求出點(diǎn)T坐標(biāo),若不存在,說(shuō)明理由.
【答案】
(1)解:設(shè)橢圓C的標(biāo)準(zhǔn)方程為 =1,a>b>0,
由已知可得: =3,c=1,
又a2=b2+c2,
解得 ,
故所求橢圓C的方程為 =1
(2)解:設(shè)存在滿足條件的點(diǎn)T(t,0),
當(dāng)直線AB斜率不為0時(shí),可設(shè)直線AB為x=my+1,A(x1,y1),B(x2,y2),
將x=my+1代入C得(4+3m2)y2+6my﹣9=0,
顯然△>0,且y1+y2= ,y1y2= ,x1+x2= ,x1x2= .
∴ =(x1﹣t)(x2﹣t)+y1y2=x1x2﹣t(x1+x2)+t2+y1y2= +t2﹣2t+1,
要使 為定值須有 = ,得t= ,
此時(shí)T( ,0), 為定值﹣ .
當(dāng)直線AB斜率為0時(shí), =﹣ .
故存在點(diǎn)T( ,0)滿足題設(shè)
【解析】(1)設(shè)橢圓C的標(biāo)準(zhǔn)方程為 =1,a>b>0.,由已知可得: =3,c=1,又a2=b2+c2 , 解出即可得出.(2)設(shè)存在滿足條件的點(diǎn)T(t,0),當(dāng)直線AB斜率不為0時(shí),可設(shè)直線AB為x=my+1,將直線方程代入C得(4+3m2)y2+6my﹣9=0,利用根與系數(shù)的關(guān)系、向量數(shù)量積運(yùn)算性質(zhì)可得: = +t2﹣2t+1,要使 為定值須有 = ,得t,即可得出;當(dāng)直線AB斜率為0時(shí), 直接得出.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形中,分別是的中點(diǎn)將分別沿折起,使重合于點(diǎn).則下列結(jié)論正確的是( )
A.
B. 平面
C. 二面角的余弦值為
D. 點(diǎn)在平面上的投影是的外心
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知a>b>c>d>0,ad=bc.
(Ⅰ)證明:a+d>b+c;
(Ⅱ)比較aabbcddc與abbaccdd的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某3D打印機(jī),其打出的產(chǎn)品質(zhì)量按照百分制衡量,若得分不低于85分則為合格品,低于85分則為不合格品,商家用該打印機(jī)隨機(jī)打印了15件產(chǎn)品,得分情況如圖;
(1)寫出該組數(shù)據(jù)的中位數(shù)和眾數(shù),并估計(jì)該打印機(jī)打出的產(chǎn)品為合格品的概率;
(2)若打印一件合格品可獲利54元,打印一件不合格品則虧損18元,記X為打印3件產(chǎn)品商家所獲得的利潤(rùn),在(1)的前提下,求隨機(jī)變量X的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】學(xué)校藝術(shù)節(jié)對(duì)同一類的,,,四項(xiàng)參賽作品,只評(píng)一項(xiàng)一等獎(jiǎng),在評(píng)獎(jiǎng)揭曉前,甲、乙、丙、丁四位同學(xué)對(duì)這四項(xiàng)參賽作品預(yù)測(cè)如下:
甲說(shuō):“是或作品獲得一等獎(jiǎng)”;
乙說(shuō):“作品獲得一等獎(jiǎng)”;
丙說(shuō):“,兩項(xiàng)作品未獲得一等獎(jiǎng)”;
丁說(shuō):“是作品獲得一等獎(jiǎng)”.
若這四位同學(xué)中只有兩位說(shuō)的話是對(duì)的,則獲得一等獎(jiǎng)的作品是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】經(jīng)國(guó)務(wù)院批復(fù)同意,鄭州成功入圍國(guó)家中心城市,某校學(xué)生團(tuán)針對(duì)“鄭州的發(fā)展環(huán)境”對(duì)20名學(xué)生進(jìn)行問(wèn)卷調(diào)查打分(滿分100分),得到如圖1所示莖葉圖.
(1)分別計(jì)算男生女生打分的平均分,并用數(shù)學(xué)特征評(píng)價(jià)男女生打分的數(shù)據(jù)分布情況;
(2)如圖2按照打分區(qū)間繪制的直方圖中,求最高矩形的高;
(3)從打分在70分以下(不含70分)的同學(xué)中抽取3人,求有女生被抽中的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】A,B,C是圓O上不同的三點(diǎn),線段CO與線段AB交于點(diǎn)D,若 =λ +μ (λ∈R,μ∈R),則λ+μ的取值范圍是( )
A.(1,+∞)
B.(0,1)
C.(1, ]
D.(﹣1,0)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在極坐標(biāo)系中,已知曲線C1:ρ=2cosθ和曲線C2:ρcosθ=3,以極點(diǎn)O為坐標(biāo)原點(diǎn),極軸為x軸非負(fù)半軸建立平面直角坐標(biāo)系.
(Ⅰ)求曲線C1和曲線C2的直角坐標(biāo)方程;
(Ⅱ)若點(diǎn)P是曲線C1上一動(dòng)點(diǎn),過(guò)點(diǎn)P作線段OP的垂線交曲線C2于點(diǎn)Q,求線段PQ長(zhǎng)度的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com