若雙曲線的焦距為10,點(diǎn)在其漸近線上,則雙曲線的方程為
A.B.C.D.
C

試題分析:根據(jù)題意,由于雙曲線的焦距為10,故有2c=10,c=5,又點(diǎn)在其漸近線上,
,代入可知,2b=a,結(jié)合,聯(lián)立方程組可知,因此雙曲線的方程為,故選C.
點(diǎn)評(píng):解決該試題的關(guān)鍵是對(duì)于雙曲線的漸近線的準(zhǔn)確表示,得到a,b的關(guān)系式,同時(shí)能利用焦距得到c,進(jìn)而得到結(jié)論,屬于基礎(chǔ)題。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿(mǎn)分10分)
若直線過(guò)點(diǎn)(0,3)且與拋物線y2=2x只有一個(gè)公共點(diǎn),求該直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿(mǎn)分13分)已知橢圓C1的離心率為,直線l: y-=x+2與.以原點(diǎn)為圓心、橢圓C1的短半軸長(zhǎng)為半徑的圓O相切.
(1)求橢圓C1的方程;
(ll)設(shè)橢圓C1的左焦點(diǎn)為F1,右焦點(diǎn)為F2,直線l2過(guò)點(diǎn)F價(jià)且垂直于橢圓的長(zhǎng)軸,動(dòng)直線l2垂直于l1,垂足為點(diǎn)P,線段PF2的垂直平分線交l2于點(diǎn)M,求點(diǎn)M的軌跡C2的方程;
(III)過(guò)橢圓C1的左頂點(diǎn)A作直線m,與圓O相交于兩點(diǎn)R,S,若△ORS是鈍角三角形,     求直線m的斜率k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

設(shè)雙曲線的右焦點(diǎn)為,左右頂點(diǎn)分別為,過(guò)且與雙曲線的一條漸近線平行的直線與另一條漸近線相交于,若恰好在以為直徑的圓上,則雙曲線的離心率為________ ______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿(mǎn)分12分)設(shè)直線與橢圓相交于兩個(gè)不同的點(diǎn),與軸相交于點(diǎn),記為坐標(biāo)原點(diǎn).
(1)證明:
(2)若的面積及橢圓方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

焦點(diǎn)為(0,6)且與雙曲線有相同的漸近線的雙曲線方程是(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知是橢圓的兩個(gè)焦點(diǎn),為橢圓上的一點(diǎn),且,則的面積是(  )
A.7B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知橢圓的上、下頂點(diǎn)分別為,左、右焦點(diǎn)分別為,若四邊形是正方形,則此橢圓的離心率等于
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿(mǎn)分15分)
給定橢圓C:,稱(chēng)圓心在原點(diǎn)O、半徑是的圓為橢圓C的“準(zhǔn)圓”.已知橢圓C的一個(gè)焦點(diǎn)為,其短軸的一個(gè)端點(diǎn)到點(diǎn)的距離為
(1)求橢圓C和其“準(zhǔn)圓”的方程;
(2)若點(diǎn)是橢圓C的“準(zhǔn)圓”與軸正半軸的交點(diǎn),是橢圓C上的兩相異點(diǎn),且軸,求的取值范圍;
(3)在橢圓C的“準(zhǔn)圓”上任取一點(diǎn),過(guò)點(diǎn)作直線,使得與橢圓C都只有一個(gè)交點(diǎn),試判斷是否垂直?并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案