已知集合M={x|y=2x},N={x|y=lg(x-1)},則M∩∁RN=( 。
A、(-∞,1]B、(-∞,1)
C、RD、∅
考點(diǎn):對(duì)數(shù)函數(shù)的定義域,交、并、補(bǔ)集的混合運(yùn)算
專題:函數(shù)的性質(zhì)及應(yīng)用,集合
分析:先將集合A,B化簡(jiǎn),然后求∁RN,再求M∩∁RN.
解答: 解:由題意集合M={x|y=2x}=R,
N={x|y=lg(x-1)}={x|x-1>0}=(1,+∞),
則∁RN=(-∞,1],
M∩∁RN=∁RN=(-∞,1],
故選:A.
點(diǎn)評(píng):本題考查結(jié)合交并補(bǔ)混合運(yùn)算,集合A,B為兩函數(shù)的定義域,注意全集為R.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)M(3,-2,1),N(3,2,1),則直線MN平行于( 。
A、y軸B、z軸
C、x軸D、xoz坐標(biāo)平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a1=2,an+1=2an+3,則a3=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)m,n是兩條不同的直線,α,β是兩個(gè)不同的平面,則下列命題中正確的是( 。
A、若m∥α,n⊥β且α⊥β,則m⊥n
B、若α⊥β,m∥n且 n⊥β,則m∥α
C、若m?α,n?β且m∥n,則α∥β
D、若m⊥α,n⊥β且m⊥n,則α⊥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某化工廠近期要生產(chǎn)一批化工試劑,經(jīng)市場(chǎng)調(diào)查得知,生產(chǎn)這批試劑廠家的生產(chǎn)成本有以下三個(gè)方面:①生產(chǎn)1單位試劑需要原料費(fèi)50元;②支付所有職工的工資總額由7500元的基本工資和每生產(chǎn)1單位試劑補(bǔ)貼20元組成;③后續(xù)保養(yǎng)的平均費(fèi)用是每單位(x+
600
x
-30)元(試劑的總產(chǎn)量為x單位,50≤x≤200).
(Ⅰ)把生產(chǎn)每單位試劑的成本表示為x的函數(shù)關(guān)系P(x),并求出P(x)的最小值;
(Ⅱ)如果產(chǎn)品全部賣出,據(jù)測(cè)算銷售額Q(x)(元)關(guān)于產(chǎn)量x(單位)的函數(shù)關(guān)系為Q(x)=1240x-
1
30
x3,試問(wèn):當(dāng)產(chǎn)量為多少時(shí)生產(chǎn)這批試劑的利潤(rùn)最高?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=2x2+bx+c(b、c∈R)在x=-1處取得極小值m-2(m∈R且m≠0),設(shè)φ(x)=
f(x)
x2
,當(dāng)x∈[-4,-2]時(shí),函數(shù)φ(x)的最大值為
m2
32
+1,則實(shí)數(shù)m的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知方程x2+y2-2(t+3)x+2(1-4t2)y+16t4+9=0表示一個(gè)圓.
(1)求t的取值范圍;
(2)求圓的圓心和半徑;
(3)求該圓的半徑r的最大值及此時(shí)圓的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若直線a?平面α,直線b?平面β,則直線a和b的位置關(guān)系
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某高級(jí)中學(xué)有高一、二、三三個(gè)年級(jí)的學(xué)生共1600名,其中高三學(xué)生400名,如果通過(guò)分層抽樣的方法從全體高中學(xué)生中抽取一個(gè)容量為80人的樣本,則應(yīng)從高三年級(jí)學(xué)生中抽取的人數(shù)是( 。
A、40B、30C、20D、10

查看答案和解析>>

同步練習(xí)冊(cè)答案