分析 (1)連接OE,則OE∥AC′,由此能證明AC′∥平面BDE.
(2)由翻折前后可知BE⊥CC′,DE⊥CC′,由此能證明CC′⊥平面BDE.
(3)連接OE,三棱錐C′-BCD的體積:${V}_{{C}^{'}-BCD}={V}_{{C}^{'}-BDE}+{V}_{C-BDE}$,由此能求出結(jié)果.
解答 證明:(1)連接OE,則在菱形ABCD中,O為AC中點(diǎn),
又E為CC′的中點(diǎn),∴OE∥AC′,
∵OE?平面BDE,AC′?平面BDE,
∴AC′∥平面BDE.
(2)由翻折前后可知:
BC=BC′,DC=DC′,
又E為CC′中點(diǎn),∴BE⊥CC′,DE⊥CC′,
又BE∩DE=E,∴CC′⊥平面BDE.
解:(3)連接OE,則由(2)知△CEO為直角三角形,OE⊥BD,
∴BD=2,OE=$\frac{3}{2}$,
∴三棱錐C′-BCD的體積:
${V}_{{C}^{'}-BCD}={V}_{{C}^{'}-BDE}+{V}_{C-BDE}$
=$\frac{1}{3}×{S}_{△BDE}×E{C}^{'}+\frac{1}{3}×{S}_{△BDE}×EC$
=$\frac{1}{3}{S}_{△BDE}×C{C}^{'}$
=$\frac{1}{3}×\frac{1}{2}×BD×OE×C{C}^{'}$
=$\frac{\sqrt{3}}{2}$.
點(diǎn)評(píng) 本題考查線面平行的證明,考查線面垂直的證明,考查三棱錐的體積的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意空間思維能力的培養(yǎng).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | -1 | C. | 2 | D. | -2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{13}{15}$ | B. | $\frac{23}{35}$ | C. | $\frac{11}{17}$ | D. | $\frac{4}{9}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com