如圖,在底面是矩形的四棱錐P—ABCD中,面ABCD,E是PD的中點。

    (1)求證:平面平面PDA;

    (2)求幾何體P—ABCD被平面ACE分得的兩部分的體積比

 

【答案】

(1)略   (2)

【解析】本試題主要是考查了面面垂直的證明,以及錐體的體積的求解的綜合運用。

(1)因為底面是矩形的四棱錐P—ABCD中,面ABCD,E是PD的中點。

因此有,再利用矩形ABCD,可知,因此得到線面垂直,進而得到平面平面PDA;

(2)求幾何體P—ABCD被平面ACE分得的兩部分的體積比合理的轉(zhuǎn)換為可以計算的錐體體積的比,合理的底面的選擇和高的求解,是解決該試題的關(guān)鍵

 

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(2012•惠州模擬)如圖,在底面是矩形的四棱錐P-ABCD中,PA⊥平面ABCD,PA=AB=2,BC=2,E是PD的中點.
(1)求證:平面PDC⊥平面PAD;
(2)求二面角E-AC-D所成平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在底面是矩形的四棱錐P-ABCD中,PA⊥底面ABCD,PA=AB=2,BC=4.
(Ⅰ)求證:平面PDC⊥平面PAD;
(Ⅱ)在BC邊上是否存在一點M,使得D點到平面PAM的距離為2,若存在,求BM的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2010•通州區(qū)一模)如圖,在底面是矩形的四棱錐P-ABCD中,PA⊥底面ABCD,E、F分別是PC、PD的中點,求證:
(Ⅰ)EF∥平面PAB;
(Ⅱ)平面PAD⊥平面PDC.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在底面是矩形的四棱錐P-ABCD中,PA⊥平面ABCD,PA=AB=2,BC=4,E是PD的中點
(1)求證:平面PDC⊥平面PAD;
(2)求三棱錐P-AEC的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在底面是矩形的四棱錐P-ABCD中,PA⊥面ABCD,PA=AB=1,BC=2.
(1)若E為PD的中點,求異面直線AE與PC所成角的余弦值;
(2)在BC上是否存在一點G,使得D到平面PAG的距離為1?若存在,求出BG;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案