如圖所示,在正方體ABCD﹣A1B1C1D1中,棱長AB=1.
(Ⅰ)求異面直線A1B與 B1C所成角的大。唬á颍┣笞C:平面A1BD∥平面B1CD1.
(Ⅰ) (Ⅱ)見解析
解析試題分析:(Ⅰ)根據(jù)異面直線所成角的定義,易知圖中 就為所求角,又三角形為正三角形;(Ⅱ)根據(jù)面面平行的判定定理,要證平面A1BD∥平面B1CD 1 可轉(zhuǎn)化為兩相交直線BD和A1B平行于平面B1CD 1,而直線與平面平行又可轉(zhuǎn)化為直線與直線平行角的處理其中很關(guān)鍵的一步就是落實角,而異面直線所成角,往往就是通過平移其中的一條直線或兩條直線轉(zhuǎn)化為相交位置出現(xiàn)角,再結(jié)合平面幾何知識進(jìn)行求解;空間位置關(guān)系的證明,其核心就是轉(zhuǎn)化化歸,本小題中線線平行、線面平行和面面平行之間在不斷的轉(zhuǎn)化.
試題解析:(Ⅰ)因為B1C//A1D,所以 為異面直線A1B與B1C所成角。在 中,易得
(Ⅱ)
考點:1、異面直線的角;2、面面平行;4、線面平行和線線平行.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知四棱錐中,底面是直角梯形,,,,,平面,.
(Ⅰ)求證:平面;
(Ⅱ)求證:平面;
(Ⅲ)若是的中點,求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,四邊形ABCD為平行四邊形,四邊形ADEF是正方形,且BD⊥平面CDE,H是BE的中點,G是AE,DF的交點.
(1)求證:GH∥平面CDE;
(2)求證:面ADEF⊥面ABCD.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖所示,在四棱錐P-ABCD中,底面ABCD是正方形,側(cè)棱PD^底面ABCD,PD=DC,點E是PC的中點,作EF^PB交PB于點F,
(1)求證:PA//平面EDB;
(2)求證:PB^平面EFD;
(3)求二面角C-PB-D的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖所示,在四棱錐P-ABCD中,底面ABCD為矩形,PA⊥平面ABCD,點E在線段PC上,PC⊥平面BDE.
(1) 證明:BD⊥平面PAC;
(2) 若AD=2,當(dāng)PC與平面ABCD所成角的正切值為時,求四棱錐P-ABCD的外接球表面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,四棱錐中,是正三角形,四邊形是矩形,且平面平面,,.
(Ⅰ)若點是的中點,求證:平面;
(II)試問點在線段上什么位置時,二面角的余弦值為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,四棱錐中,四邊形為矩形,為等腰三角形,,平面 平面,且,分別為和的中點.
(Ⅰ)證明:平面;
(Ⅱ)證明:平面平面;
(Ⅲ)求四棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在四棱錐中,側(cè)面底面,,為中點,底面是直角梯形,,,,.
(1) 求證:平面;
(2) 求證:平面平面;
(3) 設(shè)為棱上一點,,試確定的值使得二面角為.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com