已知定義域為R的函數(shù)f(x)滿足:f(4)=-3,且對任意x∈R總有f′(x)<3,則不等式f(x)<3x-15的解集為( )
A.(-∞,4)
B.(-∞,-4)
C.(-∞,-4)∪(4,+∞)
D.(4,+∞)
【答案】分析:設(shè)F(x)=f(x)-(3x-15)=f(x)-3x+15,則F′(x)=f′(x)-3,由對任意x∈R總有f′(x)<3,知F′(x)=f′(x)-3<0,所以F(x)=f(x)-3x+15在R上是減函數(shù),由此能夠求出結(jié)果.
解答:解:設(shè)F(x)=f(x)-(3x-15)=f(x)-3x+15,
則F′(x)=f′(x)-3,
∵對任意x∈R總有f′(x)<3,
∴F′(x)=f′(x)-3<0,
∴F(x)=f(x)-3x+15在R上是減函數(shù),
∵f(4)=-3,
∴F(4)=f(4)-3×4+15=0,
∵f(x)<3x-15,
∴F(x)=f(x)-3x+15<0,
∴x>4.
故選D.
點評:本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性的應(yīng)用,是中檔題.解題時要認(rèn)真審題,仔細(xì)解答,注意合理地進(jìn)行等價轉(zhuǎn)化.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2010•石家莊二模)已知定義域為R的函數(shù)f(x)在(1,+∞)上為減函數(shù),且函數(shù)y=f(x+1)為偶函數(shù),則( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義域為R的函數(shù)f(x)滿足f(x)f(x+2)=5,若f(2)=3,則f(2012)=
5
3
5
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義域為R的函數(shù)f(x)在(4,+∞)上為減函數(shù),且函數(shù)y=f(x)的對稱軸為x=4,則(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義域為R的函數(shù)f(x)=
-2x+a2x+1
是奇函數(shù)
(1)求a值;
(2)判斷并證明該函數(shù)在定義域R上的單調(diào)性;
(3)若對任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求實數(shù)k的取值范圍;
(4)設(shè)關(guān)于x的函數(shù)F(x)=f(4x-b)+f(-2x+1)有零點,求實數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義域為R的函數(shù)f(x)滿足f(4-x)=-f(x),當(dāng)x<2時,f(x)單調(diào)遞減,如果x1+x2>4且(x1-2)(x2-2)<0,則f(x1)+f(x2)的值( 。

查看答案和解析>>

同步練習(xí)冊答案