設(shè)函數(shù),其中為常數(shù)。
(Ⅰ)當(dāng)時(shí),判斷函數(shù)在定義域上的單調(diào)性;
(Ⅱ)若函數(shù)有極值點(diǎn),求的取值范圍及的極值點(diǎn)。

(Ⅰ)函數(shù)在定義域上單調(diào)遞增;(Ⅱ)當(dāng)且僅當(dāng)時(shí)有極值點(diǎn);當(dāng)時(shí),有惟一最小值點(diǎn);當(dāng)時(shí),有一個(gè)極大值點(diǎn)和一個(gè)極小值點(diǎn)

解析試題分析:(Ⅰ)函數(shù)在定義域上的單調(diào)性的方法,一是利用定義,二是利用導(dǎo)數(shù),此題既有代數(shù)函數(shù)又有對(duì)數(shù)函數(shù),顯然利用導(dǎo)數(shù)判斷,只需對(duì)求導(dǎo),判斷的符號(hào)即可;(Ⅱ)求的極值,只需對(duì)求導(dǎo)即可,利用導(dǎo)數(shù)求函數(shù)的極值一般分為四個(gè)步驟:①確定函數(shù)的定義域;②求出;③令,列表;④確定函數(shù)的極值.此題由(Ⅰ)得,當(dāng)時(shí),函數(shù)無極值點(diǎn),只需討論的情況,解的根,討論在范圍內(nèi)根的個(gè)數(shù),從而確定的取值范圍及的極值點(diǎn),值得注意的是,求出的根時(shí),忽略討論根是否在定義域內(nèi),而出錯(cuò).
試題解析:(Ⅰ)由題意知,的定義域?yàn)?img src="http://thumb.1010pic.com/pic5/tikupic/ca/c/1vows3.png" style="vertical-align:middle;" />,  ∴當(dāng)時(shí),,函數(shù)在定義域上單調(diào)遞增.
(Ⅱ)①由(Ⅰ)得,當(dāng)時(shí),函數(shù)無極值點(diǎn),②時(shí),有兩個(gè)相同的解,但當(dāng)時(shí),,當(dāng)時(shí),時(shí),函數(shù)上無極值點(diǎn),③當(dāng)時(shí),有兩個(gè)不同解,,時(shí),,而,此時(shí) 在定義域上的變化情況如下表:

      1. <ol id="r1hro"></ol>
        <form id="r1hro"><li id="r1hro"><kbd id="r1hro"></kbd></li></form>











        練習(xí)冊(cè)系列答案
        相關(guān)習(xí)題

        科目:高中數(shù)學(xué) 來源: 題型:解答題

        已知函數(shù)
        (1)當(dāng)時(shí),試討論函數(shù)的單調(diào)性;
        (2)證明:對(duì)任意的 ,有.

        查看答案和解析>>

        科目:高中數(shù)學(xué) 來源: 題型:解答題

        (本小題滿分共12分)已知函數(shù),曲線在點(diǎn)處切線方程為。
        (Ⅰ)求的值;
        (Ⅱ)討論的單調(diào)性,并求的極大值。

        查看答案和解析>>

        科目:高中數(shù)學(xué) 來源: 題型:解答題

        已知函數(shù)
        (Ⅰ)若對(duì)任意,使得恒成立,求實(shí)數(shù)的取值范圍;
        (Ⅱ)證明:對(duì),不等式成立.

        查看答案和解析>>

        科目:高中數(shù)學(xué) 來源: 題型:解答題

        已知函數(shù)
        (Ⅰ)當(dāng)時(shí),求的極值;
        (Ⅱ)若在區(qū)間上是增函數(shù),求實(shí)數(shù)的取值范圍.

        查看答案和解析>>

        科目:高中數(shù)學(xué) 來源: 題型:解答題

        已知函數(shù)是定義在上的奇函數(shù),當(dāng)時(shí), (其中e是自然界對(duì)數(shù)的底,)
        (Ⅰ)設(shè),求證:當(dāng)時(shí),
        (Ⅱ)是否存在實(shí)數(shù)a,使得當(dāng)時(shí),的最小值是3 ?如果存在,求出實(shí)數(shù)a的值;如果不存在,請(qǐng)說明理由。

        查看答案和解析>>

        科目:高中數(shù)學(xué) 來源: 題型:解答題

        設(shè)函數(shù)
        (1)當(dāng)時(shí),求曲線處的切線方程;
        (2)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
        (3)在(2)的條件下,設(shè)函數(shù),若對(duì)于[1,2],[0,1],使成立,求實(shí)數(shù)的取值范圍.

        查看答案和解析>>

        科目:高中數(shù)學(xué) 來源: 題型:解答題

        已知函數(shù)().
        (1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
        (2)當(dāng)時(shí),取得極值.
        ① 若,求函數(shù)上的最小值;
        ② 求證:對(duì)任意,都有.

        查看答案和解析>>

        科目:高中數(shù)學(xué) 來源: 題型:解答題

        設(shè)
        (Ⅰ)若,討論的單調(diào)性;
        (Ⅱ)時(shí),有極值,證明:當(dāng)時(shí),

        查看答案和解析>>

        同步練習(xí)冊(cè)答案