如圖,在體積為的正三棱錐中,長為,為棱的中點,求

(1)異面直線所成角的大。ńY果用反三角函數(shù)值表示);
(2)正三棱錐的表面積.

(1);(2)

解析試題分析:(1)本題求異面直線所成的角,根據(jù)定義要把這個角作出來,一般平移其中一條,到與另一條相交為此,題中由于有的中點,因此我們以中點,就有,那么就是所求的角(或其補角);(2)要求正三棱錐的表面積,必須求得斜高,由已知體積,可以先求得棱錐的高,取的中心,那么就是棱錐的高,下面只要根據(jù)正棱錐的性質(正棱錐中的直角三角形)應該能求得側棱長或斜高,有了斜高,就能求得棱錐的側面積了,再加上底面積,就得到表面積了.
試題解析:(1)過點平面,垂足為,則的中心,由(理1分文2分)
又在正三角形中得,所以           (理2分文4分)
中點,連結、,故,
所以就是異面直線所成的角.(理4分文6分)
在△中,,,      (理5分文8分)
所以.      (理6分文10分)
所以,異面直線所成的角的大小為. (理7分文12分)

(2)由可得正三棱錐的側面積為
           (理10分)
所以正三棱錐的表面積為
.            (理12分)
考點:(1)異面直線所成的角;(2)棱錐的體積與表面積.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

如圖所示,在四棱錐中,平面,,的中點,上的點且,為△邊上的高.
(1)證明:平面;
(2)若,,求三棱錐的體積;
(3)證明:平面.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在四棱柱中,底面ABCD和側面都是矩形,E是CD的中點,,
.
(1)求證:;
(2)若,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在五面體中,已知平面

(1)求證:;
(2)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知幾何體由正方體和直三棱柱組成,其三視圖和直觀圖(單位:cm)如圖所示.設兩條異面直線所成的角為,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖在四棱錐中,底面是矩形,平面,,點中點,點邊上的任意一點.

(1)當點邊的中點時,判斷與平面的位置關系,并加以證明;
(2)證明:無論點邊的何處,都有;
(3)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖在三棱柱ABC-A1B1C1中,AB⊥AC,頂點A1在底面ABC上的射影恰為點B,且AB=AC=A1B=2.
 
(1)證明:平面A1AC⊥平面AB1B;
(2)若點P為B1C1的中點,求三棱錐P-ABC與四棱錐P-AA1B1B的體積之比.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設倒圓錐形容器的軸截面為一個等邊三角形,在此容器內注入水,并浸入半徑為的一個實心球,使球與水面恰好相切,試求取出球后水面高為多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知四棱錐PABCD的正視圖是一個底邊長為4、腰長為3的等腰三角形,如圖分別是四棱錐PABCD的側視圖和俯視圖.

(1)求證:ADPC;
(2)求四棱錐PABCD的側面PAB的面積.

查看答案和解析>>

同步練習冊答案