如圖在四棱錐中,底面是矩形,平面,,點(diǎn)中點(diǎn),點(diǎn)邊上的任意一點(diǎn).

(1)當(dāng)點(diǎn)邊的中點(diǎn)時(shí),判斷與平面的位置關(guān)系,并加以證明;
(2)證明:無論點(diǎn)邊的何處,都有;
(3)求三棱錐的體積.

(1)答案詳見解析;(2)答案詳見解析;(3).

解析試題分析:(1)證明直線和平面平行的常用方法有兩種:①證明直線和平面內(nèi)的一條直線平行;②若兩個(gè)平面平行,則一個(gè)平面內(nèi)的直線平行于另一個(gè)平面.本題中,易證,進(jìn)而證明;(2)要證明直線和直線垂直,往往通過證明直線和平面垂直.本題中,只需證明,因,故只需證明,進(jìn)而轉(zhuǎn)化為證明,因,故只需證明,顯然易證;(3)求四面體體積,難點(diǎn)是確定四面體的高,如果高不易求,可考慮等體積轉(zhuǎn)化,本題中三棱錐的體積可轉(zhuǎn)化為的體積來求.
試題解析:(1)當(dāng)點(diǎn)邊的中點(diǎn)時(shí),∵點(diǎn)中點(diǎn),∴,又∵,,∴.
(2)∵平面,∴,又∵底面是矩形,∴,,∴,又∵,∴,又,點(diǎn)中點(diǎn),∴,又,∴平面10分
(3)作,則平面,且

三棱錐的體積為.14分
考點(diǎn):1、直線和平面平行的判定;2、直線和平面垂直的判定和性質(zhì);3、四面體的體積.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

四面體及其三視圖如圖所示,過棱的中點(diǎn)作平行于,的平面分
別交四面體的棱于點(diǎn).

(1)證明:四邊形是矩形;
(2)求直線與平面夾角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在直角梯形中,°,,平面,,設(shè)的中點(diǎn)為,

(1) 求證:平面;
(2) 求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在四棱錐P-ABCD中,PD⊥平面ABCD,四邊形ABCD是菱形,AC=6,BD=8,E是PB上任意一點(diǎn),△AEC面積的最小值是3.

(1)求證:AC⊥DE;
(2)求四棱錐P-ABCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在體積為的正三棱錐中,長(zhǎng)為,為棱的中點(diǎn),求

(1)異面直線所成角的大。ńY(jié)果用反三角函數(shù)值表示);
(2)正三棱錐的表面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,直三棱柱ABC-A1B1C1中,D、E分別是AB、BB1的中點(diǎn).
 
(1)證明:BC1//平面A1CD;
(2)設(shè)AA1=AC=CB=2,AB=,求三棱錐C一A1DE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知一個(gè)幾何體的三視圖如圖所示.

(1)求此幾何體的表面積;
(2)在如圖的正視圖中,如果點(diǎn)為所在線段中點(diǎn),點(diǎn)為頂點(diǎn),求在幾何體側(cè)面上從點(diǎn)到點(diǎn)的最短路徑的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在三棱柱中,側(cè)棱底面, 的中點(diǎn),.

(1)求證:平面;
(2)若,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在四棱錐S-ABCD中,底面ABCD是直角梯形,AD垂直于AB和DC,側(cè)棱SA底面ABCD,且SA=2,AD=DC=1, 點(diǎn)E在SD上,且

(1)證明:平面
(2)求三棱錐的體積

查看答案和解析>>

同步練習(xí)冊(cè)答案