已知等比數(shù)列{an}中,a2=32,a8=
12
,an+1<an
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)Tn=log2a1+log2a2+…+log2an,求Tn的最大值及相應(yīng)的n值.
分析:(1)根據(jù)等比數(shù)列的性質(zhì)可知第八項(xiàng)與第二項(xiàng)的比值等于公比的六次方,利用已知即可求出公比的值,然后根據(jù)第二項(xiàng)的值與求出公比的值求出首項(xiàng),根據(jù)首項(xiàng)和公比寫出等比數(shù)列的通項(xiàng)公式即可;
(2)設(shè)bn=log2an,把第一問求出的通項(xiàng)公式代入即可得到bn的通項(xiàng)公式,從而根據(jù)通項(xiàng)公式得到bn為等差數(shù)列,根據(jù)首項(xiàng)和公差,根據(jù)等差數(shù)量的前n項(xiàng)和的公式得到Tn的通項(xiàng),利用二次函數(shù)求最值的方法即可得到Tn的最大值及相應(yīng)的n值.
解答:解:(1)q6=
a8
a2
=
1
2
32
=
1
64
,an+1<an,
所以:q=
1
2

a1=
a2
q
=
32
1
2
=64
為首項(xiàng).
所以,通項(xiàng)公式為:an=64•(
1
2
)n-1=27-n(n∈N*)

(2)設(shè)bn=log2an,則bn=log227-n=7-n.
所以{bn}是首項(xiàng)為6,公差為-1的等差數(shù)列.
Tn=6n+
n(n-1)
2
(-1)
=-
1
2
n2+
13
2
n=-
1
2
(n-
13
2
)2+
169
8

因?yàn)閚是自然數(shù),所以n=6或n=7時(shí),Tn最大,其最值是T6=T7=21
點(diǎn)評:此題考查學(xué)生靈活運(yùn)用等比數(shù)列的通項(xiàng)公式及等差數(shù)列的前n項(xiàng)和的公式化簡求值,掌握等比數(shù)列的性質(zhì)及二次函數(shù)求最值的方法,是一道綜合題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

5、已知等比數(shù)列{an}的前n項(xiàng)和為Sn,公比q≠1,若S5=3a4+1,S4=2a3+1,則q等于(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等比數(shù)列{an}中,a2=9,a5=243.
(1)求{an}的通項(xiàng)公式;
(2)令bn=log3an,求數(shù)列{
1bnbn+1
}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等比數(shù)列{an}滿足a1•a7=3a3a4,則數(shù)列{an}的公比q=
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等比數(shù)列{an}中a1=64,公比q≠1,且a2,a3,a4分別為某等差數(shù)列的第5項(xiàng),第3項(xiàng),第2項(xiàng).
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=log2an,求數(shù)列{|bn|}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等比數(shù)列{an}中,a3+a6=36,a4+a7=18.若an=
12
,則n=
9
9

查看答案和解析>>

同步練習(xí)冊答案