【題目】已知曲線的參數(shù)方程為,其中為參數(shù),且在直角坐標系中,以坐標原點為極點,以軸正半軸為極軸建立極坐標系.

1)求曲線的極坐標方程;

2)設是曲線上的一點,直線被曲線截得的弦長為,求點的極坐標.

【答案】(1);(2)

【解析】試題分析:Ⅰ)運用平方法,可將半圓的參數(shù)方程化為普通方程,再由x=ρcosθ,y=ρsinθ,x2+y22,即可得到極坐標方程;
Ⅱ)結合半圓的直徑所對的圓周角為直角,再由特殊角的三角函數(shù)值,即可求得T點的極坐標.

試題解析:

根據(jù)曲線的參數(shù)方程,其中為參數(shù),且,

得曲線C的普通方程為: ,

所以,曲線的極坐標方程為: , .

(Ⅱ)由題意可得半圓C的直徑為2,設半圓的直徑為OA,

,

由于,則,

由于∠TAO=∠TOX,

所以,

T點的極坐標為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某城市隨機抽取一年(365天)內100天的空氣質量指數(shù)Air Pollution Index)的監(jiān)測數(shù)據(jù),結果統(tǒng)計如下:

大于300

空氣質量

優(yōu)

輕微污染

輕度污染

中度污染

中度重

污染

重度污染

天數(shù)

10

15

20

30

7

6

12

(Ⅰ)若本次抽取的樣本數(shù)據(jù)有30天是在供暖季,其中有7天為重度污染,完成下面列聯(lián)表,并判斷能否有的把握認為該市本年空氣重度污染與供暖有關?

非重度污染

重度污染

合計

供暖季

非供暖季

合計

100

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

附:

(Ⅱ)政府要治理污染,決定對某些企業(yè)生產(chǎn)進行管控,當在區(qū)間時企業(yè)正常生產(chǎn);在區(qū)間時對企業(yè)限產(chǎn)(即關閉的產(chǎn)能),當在區(qū)間時對企業(yè)限產(chǎn),300以上時對企業(yè)限產(chǎn)企業(yè)甲是被管控的企業(yè)之一,若企業(yè)甲正常生產(chǎn)一天可得利潤2萬元,若以頻率當概率,不考慮其他因素:

①在這一年中隨意抽取5天,求5天中企業(yè)被限產(chǎn)達到或超過的恰為2天的概率;

②求企業(yè)甲這一年因限產(chǎn)減少的利潤的期望值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓 ,其焦距為2,離心率為

1)求橢圓的方程;

2)設橢圓的右焦點為, 軸上一點,滿足,過點作斜率不為0的直線交橢圓于兩點,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,已知直線與橢圓交于點, 軸上方),且.設點軸上的射影為,三角形的面積為2(如圖1.

1)求橢圓的方程;

2)設平行于的直線與橢圓相交,其弦的中點為.

①求證:直線的斜率為定值;

②設直線與橢圓相交于兩點軸上方),點為橢圓上異于, , 一點,直線于點, 于點,如圖2,求證: 為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,拋物線和圓,直線經(jīng)過拋物線的焦點,依次交拋物線與圓四點, ,的值為(

A. B. C. 1 D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,曲線的參數(shù)方程為為參數(shù)),在以為極點, 軸的正半軸為極軸的極坐標系中,曲線是圓心為,半徑為1的圓.

(1)求曲線, 的直角坐標方程;

(2)設為曲線上的點, 為曲線上的點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了研究某藥品的療效,選取若干名志愿者進行臨床試驗,所有志愿者的舒張壓數(shù)據(jù)(單位:kPa)的分組區(qū)間為[12,13),[13,14),[14,15),[15,16),[16,17],將其按從左到右的順序分別編號為第一組,第二組,…,第五組,如圖是根據(jù)試驗數(shù)據(jù)制成的頻率分布直方圖.已知第一組與第二組共有20人,第三組中沒有療效的有6人,則第三組中有療效的人數(shù)為(  )

A. 6 B. 8

C. 12 D. 18

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的一個焦點坐標為

(Ⅰ)求橢圓的方程;

(Ⅱ)已知點,過點的直線(與軸不重合)與橢圓交于兩點,直線與直線相交于點,試證明:直線軸平行.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】據(jù)中國日報網(wǎng)報道:2017年11月13日,TOP500發(fā)布的最新一期全球超級計算機500強榜單顯示,中國超算在前五名中占據(jù)兩席,其中超算全球第一“神威太湖之光”完全使用了國產(chǎn)品牌處理器。為了了解國產(chǎn)品牌處理器打開文件的速度,某調查公司對兩種國產(chǎn)品牌處理器進行了12次測試,結果如下(數(shù)值越小,速度越快,單位是MIPS

測試1

測試2

測試3

測試4

測試5

測試6

測試7

測試8

測試9

測試10

測試11

測試12

品牌A

3

6

9

10

4

1

12

17

4

6

6

14

品牌B

2

8

5

4

2

5

8

15

5

12

10

21

分別表示第次測試中品牌A和品牌B的測試結果,記

)求數(shù)據(jù)的眾數(shù);

)從滿足的測試中隨機抽取兩次,求品牌A的測試結果恰好有一次大于品牌B的測試結果的概率;

(Ⅲ)經(jīng)過了解,前6次測試是打開含有文字和表格的文件,后6次測試是打開含有文字和圖片的文件.請你依據(jù)表中數(shù)據(jù),運用所學的統(tǒng)計知識,對這兩種國產(chǎn)品牌處理器打開文件的速度進行評價.

查看答案和解析>>

同步練習冊答案