【題目】如圖,已知圓,點是圓內(nèi)一個定點,點是圓上任意一點,線段的垂直平分線和半徑相交于點.當點在圓上運動時,點的軌跡為橢圓.

1分別為橢圓的左右焦點,為橢圓上任意一點,若,求的面積;

2)如圖,若橢圓,橢圓,且),則稱橢圓是橢圓倍相似橢圓.已知是橢圓倍相似橢圓,若橢圓的任意一條切線交橢圓于兩點,試求弦長的取值范圍.

【答案】(1);(2) .

【解析】

(1)根據(jù)線段中垂線的性質(zhì),可求出的方程為,由橢圓的定義可知,結合已知條件可求出,又,結合余弦定理以及同角三角函數(shù)的基本關系可求出,進而可求出三角形的面積.

(2)當切線斜率不存在時,可求出;若斜率存在,設方程為,與聯(lián)立可知,即;與聯(lián)立,結合韋達定理、弦長公式可求出,從而可求出弦長的取值范圍.

(1)解:由題意知,圓心,半徑,且,

設橢圓的方程為,焦點坐標為,由橢圓的定義可知,,

解得,所以,所以的方程為.

因為為橢圓上任意一點,所以,由,可知

,又因為,由余弦定理知,

,所以

的面積為.

(2)(1)知,的方程為,即..

若切線垂直于軸,其方程為,不妨設為,則 ,解得,

所以此時,;同理對于切線為時,求出.

若切線不垂直于軸,設其方程為,,整理得

,則,即()

切線與聯(lián)立得,整理得,

所以,則

.

因為,所以,從而.

綜上所述,的取值范圍為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐P-ABCD中,PA平面ABCD,在四邊形ABCD中,ABC=,AB=4,BC=3,CD=AD=2,PA=4.

1)證明:CD平面PAD;

2)求二面角B-PC-D的余弦值..

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,曲線的參數(shù)方程為為參數(shù)),以原點為極點,以x軸正半軸為極軸,建立極坐標系,曲線的極坐標方程為.

1)求曲線的極坐標方程與曲線的直角坐標方程;

2)設、為曲線上位于第一,二象限的兩個動點,且,射線,交曲線分別于點,.面積的最小值,并求此時四邊形的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓,動圓與圓外切,且與直線相切,該動圓圓心的軌跡為曲線.

1)求曲線的方程

2)過點的直線與拋物線相交于兩點,拋物線在點A的切線與交于點N,求面積的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,斜率為的直線交拋物線兩點,已知點的橫坐標比點的橫坐標大4,直線交線段于點,交拋物線于點

1)若點的橫坐標等于0,求的值;

2)求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】矩形中,,,點,分別是,上的動點,將矩形沿所在的直線進行隨意翻折,在翻折過程中直線與直線所成角的范圍(包含初始狀態(tài))為( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,橢圓的左、右頂點分別為AB,右焦點為F,且點F滿足,由橢圓C的四個頂點圍成的四邊形面積為.過點的直線TA,TB與此橢圓分別交于點,,其中,

1)求橢圓C的標準方程;

2)當T在直線時,直線MN是否過x軸上的一定點?若是,求出該定點的坐標;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在等比數(shù)列中,已知設數(shù)列的前n項和為,且

1)求數(shù)列通項公式;

2)證明:數(shù)列是等差數(shù)列;

3)是否存在等差數(shù)列,使得對任意,都有?若存在,求出所有符合題意的等差數(shù)列;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),

(1)討論函數(shù)的導函數(shù)的單調(diào)性;

(2)若函數(shù)處取得極大值,求a的取值范圍.

查看答案和解析>>

同步練習冊答案