【題目】我市2016年11月1日11月30日對空氣污染指數(shù)的監(jiān)測數(shù)據(jù)如下(主要污染物可吸入顆粒物):61,76,70,56,81,91,92,91,75,81,88,67,101,103,95,91,77,86,83,82,82,64,79,86,85,75,71,49,45.

樣本頻率分布表:

分組

頻數(shù)

頻率

2

1

4

6

10

2

(Ⅰ)完成頻率分布表;

(Ⅱ)作出頻率分布直方圖;

(Ⅲ)根據(jù)國家標準,污染指數(shù)在050之間時,空氣質(zhì)量為優(yōu);在51100之間時為良;在101150之間時,為輕微污染;在151200之間時,為輕度污染.請你依據(jù)所給數(shù)據(jù)和上述標準,對該市的空氣質(zhì)量給出一個簡短評價.

【答案】(Ⅰ)見解析;(Ⅱ)見解析;(Ⅲ)見解析.

【解析】試題分析:Ⅰ)將數(shù)據(jù)從小到大排列,確定最大值和最小值,根據(jù)數(shù)據(jù)量來確定組數(shù)以及組距.關鍵是不要漏掉任何一個數(shù)據(jù),可在寫出各組頻數(shù)后,將其相加確定其和是否等于總數(shù)據(jù)量。

Ⅱ)利用(Ⅰ)中結果,按照規(guī)范作出頻率分布直方圖即可.

Ⅲ)本題主要考查考生對數(shù)據(jù)的理解能力,考生只需將圖形中看到的以及圖形中蘊含的相關內(nèi)容合理表述出來即可.

試題解析:(Ⅰ)頻率分布表.

分組

頻數(shù)

頻率

[41,51)

2

[51,61)

1

[61,71)

4

[71,81)

6

[81,91)

10

[91,101)

5

[101,111]

2

(Ⅱ)頻率分布直方圖如下圖.

(Ⅲ)答對下述兩條中的一條即可:

①我市一個月中空氣污染指數(shù)有2天處于優(yōu)的水平,占當月天數(shù)的.有26天處于良的水平,占當月天數(shù)的.處于優(yōu)或良的天數(shù)共有28天,占當月天數(shù)的.說明該市空氣質(zhì)量基本良好.

②輕微污染有2天,占當月天數(shù)的.污染指數(shù)在80以上接近輕微污染的天數(shù)有15天,加上處于輕微污染的天數(shù),共有17天,占當月天數(shù)的,超過50%.說明該市空氣質(zhì)量有待進一步改善.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在直四棱柱ABCDA1B1C1D1底面四邊形ABCD為菱形,A1AAB2,∠ABC,EF分別是BC,A1C的中點

(1)求異面直線EF,AD所成角的余弦值;

(2)點M在線段A1D上, .若CM∥平面AEF,求實數(shù)λ的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知f(x)=ax﹣lnx,x∈(0,e],g(x)= ,其中e是自然常數(shù),a∈R.
(1)討論a=1時,函數(shù)f(x)的單調(diào)性和極值;
(2)求證:在(1)的條件下,f(x)>g(x)+
(3)是否存在實數(shù)a使f(x)的最小值是3?若存在,求出a的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù))與函數(shù)有公共切線.

(Ⅰ)求的取值范圍;

(Ⅱ)若不等式對于的一切值恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如下圖,在四棱錐中,底面是邊長為的正方形,平面平面, , 中點,且.

(Ⅰ)求證: 平面;

(Ⅱ)求證: ;

(Ⅲ)求與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】執(zhí)行如圖所示程序框圖,若輸入a,b,i的值分別為6,4,1,則輸出a和i的值分別為(

A.2,4
B.3,4
C.2,5
D.2,6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)y=f(x)是定義在R上的增函數(shù),函數(shù)y=f(x﹣1)的圖象關于(1,0)對稱.若對任意的x,y∈R,不等式f(x2﹣6x+21)+f(y2﹣8y)<0恒成立,則當x>3時,x2+y2的取值范圍是(
A.(9,25)
B.(13,49)
C.(3,7)
D.(9,49)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了得到函數(shù)y=sin2x的圖象,只需把函數(shù)y=sin(2x﹣ )的圖象(
A.向左平移 個單位長度
B.向右平移 個單位長度
C.向左平移 個單位長度
D.向右平移 個單位長度

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】梯形ABCD頂點B、C在以AD為直徑的圓上,AD=2米,

(1)如圖1,若電熱絲由AB,BC,CD這三部分組成,在AB,CD上每米可輻射1單位熱量,在BC上每米可輻射2單位熱量,請設計BC的長度,使得電熱絲輻射的總熱量最大,并求總熱量的最大值;

(2)如圖2,若電熱絲由弧和弦BC這三部分組成,在弧上每米可輻射1單位熱量,在弦BC上每米可輻射2單位熱量,請設計BC的長度,使得電熱絲輻射的總熱量最大.

查看答案和解析>>

同步練習冊答案