已知函數(shù)f(x)=ex-a(x-1),x∈R.
(1)若實數(shù)a>0,求函數(shù)f(x)在(0,+∞)上的極值;
(2)記函數(shù)g(x)=f(2x),設函數(shù)y=g(x)的圖象C與y軸交于P點,曲線C在P點處的切線與兩坐標軸所圍成的圖形的面積為S(a),求當a>1時S(a)的最小值.
解:(1)由f'(x)=e
x-a=0,得x=lna.
①當a∈(0,1]時,f'(x)=e
x-a>1-a≥0(x>0).此時f(x)在(0,+∞)上單調(diào)遞增.函數(shù)無極值.
②當a∈(1,+∞)時,lna>0.
x變化時f′(x),f(x)的變化情況如下表:
x | (0,lna) | lna | (lna,+∞) |
f′(x) | - | 0 | + |
f(x) | 單調(diào)減 | 極小值 | 單調(diào)增 |
由此可得,函數(shù)有極小值且f(x)
極小=f(lna)=a-a(lna-1)=2a-alna.
(2)g(x)=f(2x)=e
2x-a(2x-1),g(0)=1+a
切線斜率為k=g'(0)=2-2a,切線方程y-(1+a)=(2-2a)(x-0),
由
∴
=
當且僅當(a-1)
2=4,即a=3時取等號.∴當a=3時,S(a)最小值為2.
分析:(1)求出函數(shù)的導數(shù),對a進行討論,分別判斷函數(shù)的單調(diào)性,最后根據(jù)a的不同取值得出的結論綜合即可;
(2)g(x)=f(2x)=e
2x-a(2x-1),計算出切線斜率,寫出切線方程y-(1+a)=(2-2a)(x-0),求得在坐標軸上的截距,利用三角形的面積公式得到面積S(a)的表達式,最后利用基本不等式求此函數(shù)的最小值即可.
點評:考查利用導數(shù)研究函數(shù)的極值.解答關鍵是要對函數(shù)求導,做題時要注意對a進行討論,最后得出函數(shù)的極值和單調(diào)區(qū)間.