如圖,的外接圓的切線的延長線交于點,的平分線與交于點D.

(1)求證:
(2)若的外接圓的直徑,且,=1.求長.
(1)略,(2)1

試題分析:(1)∵AE是圓的切線,∴∠ABC=∠CAE.
∵AD是∠BAC的平分線,∴∠BAD=∠CAD,
從而∠ABC+∠BAD=∠CAE+∠CAD.
∵∠ADE=∠ABC+∠BAD,∠DAE=∠CAD+∠CAE,
∴∠ADE=∠DAE,得EA=ED.
∵AE是圓的切線,∴由切割線定理,得=EC•EB.
結(jié)合EA=ED,得
(2)由(1)及ABE與ECA可得AC=1.
點評:中檔題,涉及圓的問題,往往與三角形相關(guān)聯(lián),利用三角形相似或三角形全等解決問題。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如右圖,是半徑為的圓O的兩條弦,他們相交于的中點,=,°,則=________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如果圓x2+y2+Dx+Ey+F=0與x軸切于原點, 那么(  )          
A.D=0,E≠0, F≠0B.E=F=0,D≠0C.D="F=0," E≠0D.D=E=0,F≠0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知⊙和點.

(Ⅰ)過點向⊙引切線,求直線的方程;
(Ⅱ)求以點為圓心,且被直線截得的弦長為4的⊙的方程;
(Ⅲ)設(shè)為(Ⅱ)中⊙上任一點,過點向⊙引切線,切點為. 試探究:平面內(nèi)是否存在一定點,使得為定值?若存在,請舉出一例,并指出相應(yīng)的定值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
已知圓和直線,直線,都經(jīng)過圓C外定點A(1,0).
(Ⅰ)若直線與圓C相切,求直線的方程;
(Ⅱ)若直線與圓C相交于P,Q兩點,與交于N點,且線段PQ的中點為M,
求證:為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分l0分)
已知圓的圓心為,半徑為。直線的參數(shù)方程為為參數(shù)),且,點的直角坐標(biāo)為,直線與圓交于兩點,求的最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

過點可作圓的兩條切線,則實數(shù)的取值范圍為(    )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題13分)
已知平面直角坐標(biāo)系內(nèi)三點
(1) 求過三點的圓的方程,并指出圓心坐標(biāo)與圓的半徑.
(2)求過點與條件 (1) 的圓相切的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

自點A(3,5)作圓C:的切線,則切線的方程為( )
A.B.
C.D.以上都不對

查看答案和解析>>

同步練習(xí)冊答案