【題目】某企業(yè)新研發(fā)了一種產(chǎn)品,產(chǎn)品的成本由原料成本及非原料成本組成.每件產(chǎn)品的非原料成本(元)與生產(chǎn)該產(chǎn)品的數(shù)量(千件)有關(guān),經(jīng)統(tǒng)計(jì)得到如下數(shù)據(jù):
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
112 | 61 | 44.5 | 35 | 30.5 | 28 | 25 | 24 |
根據(jù)以上數(shù)據(jù),繪制了散點(diǎn)圖.
觀察散點(diǎn)圖,兩個(gè)變量不具有線(xiàn)性相關(guān)關(guān)系,現(xiàn)考慮用反比例函數(shù)模型和指數(shù)函數(shù)模型分別對(duì)兩個(gè)變量的關(guān)系進(jìn)行擬合.已求得用指數(shù)函數(shù)模型擬合的回歸方程為,與的相關(guān)系數(shù).
參考數(shù)據(jù)(其中):
183.4 | 0.34 | 0.115 | 1.53 | 360 | 22385.5 | 61.4 | 0.135 |
(1)用反比例函數(shù)模型求關(guān)于的回歸方程;
(2)用相關(guān)系數(shù)判斷上述兩個(gè)模型哪一個(gè)擬合效果更好(精確到0.01),并用其估計(jì)產(chǎn)量為10千件時(shí)每件產(chǎn)品的非原料成本;
(3)該企業(yè)采取訂單生產(chǎn)模式(根據(jù)訂單數(shù)量進(jìn)行生產(chǎn),即產(chǎn)品全部售出).根據(jù)市場(chǎng)調(diào)研數(shù)據(jù),若該產(chǎn)品單價(jià)定為100元,則簽訂9千件訂單的概率為0.8,簽訂10千件訂單的概率為0.2;若單價(jià)定為90元,則簽訂10千件訂單的概率為0.3,簽訂11千件訂單的概率為0.7.已知每件產(chǎn)品的原料成本為10元,根據(jù)(2)的結(jié)果,企業(yè)要想獲得更高利潤(rùn),產(chǎn)品單價(jià)應(yīng)選擇100元還是90元,請(qǐng)說(shuō)明理由.
參考公式:對(duì)于一組數(shù)據(jù),,…,,其回歸直線(xiàn)的斜率和截距的最小二乘估計(jì)分別為:,,相關(guān)系數(shù).
【答案】(1)(2)見(jiàn)解析;(3)見(jiàn)解析.
【解析】
(1)首先可令并將轉(zhuǎn)化為,然后根據(jù)題目所給數(shù)據(jù)以及線(xiàn)性回歸方程的相關(guān)計(jì)算出以及,即可得出結(jié)果;
(2)計(jì)算出反比例函數(shù)模型的相關(guān)系數(shù)并通過(guò)對(duì)比即可得出結(jié)果;
(3)可分別計(jì)算出單價(jià)為元和元時(shí)產(chǎn)品的利潤(rùn),通過(guò)對(duì)比即可得出結(jié)果。
(1)令,則可轉(zhuǎn)化為,
因?yàn)?/span>,所以,
則,所以,
所以關(guān)于的回歸方程為;
(2)與的相關(guān)系數(shù)為:
,
因?yàn)?/span>,所以用反比例函數(shù)模型擬合效果更好,
當(dāng)時(shí),(元),
所以當(dāng)產(chǎn)量為10千件時(shí),每件產(chǎn)品的非原料成本為元;
(3)①當(dāng)產(chǎn)品單價(jià)為元,設(shè)訂單數(shù)為千件:
因?yàn)楹炗?千件訂單的概率為0.8,簽訂10千件訂單的概率為0.2,
所以,
所以企業(yè)利潤(rùn)為(千元),
②當(dāng)產(chǎn)品單價(jià)為元,設(shè)訂單數(shù)為千件:
因?yàn)楹炗?0千件訂單的概率為0.3,簽訂11千件訂單的概率為0.7,
所以,
所以企業(yè)利潤(rùn)為(千元),
故企業(yè)要想獲得更高利潤(rùn),產(chǎn)品單價(jià)應(yīng)選擇元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】生活中人們常用“通五經(jīng)貫六藝”形容一個(gè)人才識(shí)技藝過(guò)人,這里的“六藝”其實(shí)源于中國(guó)周朝的貴族教育體系,具體包括“禮、樂(lè)、射、御、書(shū)、數(shù)”.為弘揚(yáng)中國(guó)傳統(tǒng)文化,某校在周末學(xué)生業(yè)余興趣活動(dòng)中開(kāi)展了“六藝”知識(shí)講座,每藝安排一節(jié),連排六節(jié),則滿(mǎn)足“數(shù)”必須排在前兩節(jié),“禮”和“樂(lè)”必須分開(kāi)安排的概率為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解學(xué)生身高情況,某校以10%的比例對(duì)全校700名學(xué)生按性別進(jìn)行分層抽樣檢查,測(cè)得身高情況的統(tǒng)計(jì)圖如下:
(1)估計(jì)該校男生的人數(shù);并求出值
(2)估計(jì)該校學(xué)生身高在之間的概率;
(3)從樣本中身高在之間的女生中任選2人,求至少有1人身高在之間的概率。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】共有編號(hào)分別為1,2,3,4,5的五個(gè)座位,在甲同學(xué)不坐2號(hào)座位,乙同學(xué)不坐5號(hào)座位的條件下,甲、乙兩位同學(xué)的座位號(hào)相加是偶數(shù)的概率為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,曲線(xiàn)的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,直線(xiàn)的極坐標(biāo)方程為.
(1)求曲線(xiàn)的普通方程及直線(xiàn)的直角坐標(biāo)方程;
(2)已知點(diǎn)為曲線(xiàn)上的動(dòng)點(diǎn),當(dāng)點(diǎn)到直線(xiàn)的距離最大時(shí),求點(diǎn)的直角坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在多面體中,四邊形是邊長(zhǎng)為的菱形,,與交于點(diǎn),平面平面,,,.
(1)求證:平面;
(2)若為等邊三角形,點(diǎn)為的中點(diǎn),求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是一塊地皮,其中, 是直線(xiàn)段,曲線(xiàn)段是拋物線(xiàn)的一部分,且點(diǎn)是該拋物線(xiàn)的頂點(diǎn), 所在的直線(xiàn)是該拋物線(xiàn)的對(duì)稱(chēng)軸.經(jīng)測(cè)量, km, km, .現(xiàn)要從這塊地皮中劃一個(gè)矩形來(lái)建造草坪,其中點(diǎn)在曲線(xiàn)段上,點(diǎn), 在直線(xiàn)段上,點(diǎn)在直線(xiàn)段上,設(shè)km,矩形草坪的面積為km2.
(1)求,并寫(xiě)出定義域;
(2)當(dāng)為多少時(shí),矩形草坪的面積最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若恒成立,求實(shí)數(shù)的最大值;
(2)在(1)成立的條件下,正實(shí)數(shù),滿(mǎn)足,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在三棱錐中,平面,,,,是的中點(diǎn),是線(xiàn)段上的一點(diǎn),且.
(1)求證:平面;
(2)求點(diǎn)到平面的距離.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com