已知命題P:函數(shù)y=loga(x+1)在(0,+∞)內(nèi)單調(diào)遞減;Q:曲線y=x2+(2a-3)x+1與x軸沒(méi)有交點(diǎn).如果“P或Q”是真命題,“P且Q”是假命題,求實(shí)數(shù)a的取值范圍.
分析:本題考查的知識(shí)點(diǎn)是復(fù)合命題的真假判定,解決的辦法是先判斷組成復(fù)合命題的簡(jiǎn)單命題的真假,再根據(jù)真值表進(jìn)行判斷.
解答:解:∵命題P:函數(shù)y=loga(x+1)在(0,+∞)內(nèi)單調(diào)遞減
∴若P為真,那么a的取值范圍是:0<a<1
∵Q:曲線y=x2+(2a-3)x+1與x軸沒(méi)有交點(diǎn)
∴若Q為真,那么a的取值范圍是:-
1
2
<a<
3
2

∵P且Q”為假命題,“P或Q”為真命題
∴P、Q一真一假
①P真Q假,那么a的取值范圍:φ
②P假Q(mào)真,那么a的取值范圍:(-
1
2
,0]∪[1,
3
2
)

綜上所述:a∈(-
1
2
,0]∪[1,
3
2
)
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是復(fù)合命題的真假判定,屬于基礎(chǔ)題目
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知命題p:函數(shù)y=lgx2的定義域是R,命題q:函數(shù)y=(
13
)
x
的值域是正實(shí)數(shù)集,給出命題:①p或q;②p且q;③非p;④非q.其中真命題個(gè)數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知命題p:函數(shù)y=x2+2(a2-a)x+a4-2a3在[-2,+∞)上單調(diào)遞增.q:關(guān)于x的不等式ax2-ax+1>0解集為R.若p∧q假,p∨q真,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知命題P:函數(shù)y=loga(1-2x)在定義域上單調(diào)遞增,命題Q:不等式(a-2)x2+2(a-2)x-4<0對(duì)任意實(shí)數(shù)x恒成立,若P∨Q是真命題,P∧Q是假命題,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知命題p:函數(shù)y=log 0.5(x2+2x+a)的值域?yàn)镽,命題q:函數(shù)y=(x-a)2在(2,+∞)上是增函數(shù).若p或q為真命題,p且q為假命題,則實(shí)數(shù)a的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知命題P:函數(shù)y=lg(ax2-x+
a16
)定義域?yàn)镽; 命題Q:函數(shù)y=(5-2a)x為增函數(shù);若“p∨q”為真命題,“p∧q:”為假命題,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案