某大學(xué)畢業(yè)生參加一個公司的招聘考試,考試分筆試和面試兩個環(huán)節(jié),筆試有A、B兩個題目,該學(xué)生答對A、B兩題的概率分別為數(shù)學(xué)公式數(shù)學(xué)公式,兩題全部答對方可過入面試,面試要回答甲、乙兩個題目,該學(xué)生答對這兩個題目的概率均為數(shù)學(xué)公式,至少答對一題即可被聘用(假設(shè)每個環(huán)節(jié)的每個題目回答正確與否是相互獨(dú)立的)
(1)求該學(xué)生沒有通過筆試的概率;
(2)求該學(xué)生被公司聘用的概率.

解:記答對筆試A、B兩題分別為事件A,B;答對面試的甲、乙兩個題目分別為事件C,D則

(1)該學(xué)生沒有通過筆試的概率1-P(AB)=1-P(A)P(B)=
答:該學(xué)生沒有通過筆試的概率為
(2)該學(xué)生被公司聘用的概率P(AB)P[1-P()]=
答:該學(xué)生被公司聘用的概率
分析:(1)“該學(xué)生沒有通過筆試”與“通過筆試”是對立事件,利用相互獨(dú)立事件的概率公式取出“通過筆試”的概率,再利用對立事件的概率公式取出)“該學(xué)生沒有通過筆試”的概率.
(2)“該學(xué)生被公司聘用”是“通過筆試”與“至少答對一道面試題”同時發(fā)生,利用相互獨(dú)立事件的概率公式取出其概率.
點(diǎn)評:求某一個事件的概率問題,關(guān)鍵是判斷出事件的類型,然后選擇合適的概率公式取出事件的概.注意:若事件中包含“至少”“至多”的字,?紤]對立事件.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某大學(xué)畢業(yè)生參加一個公司的招聘考試,考試分筆試和面試兩個環(huán)節(jié),筆試有A、B兩個題目,該學(xué)生答對A、B兩題的概率分別為
1
2
1
3
,兩題全部答對方可過入面試,面試要回答甲、乙兩個題目,該學(xué)生答對這兩個題目的概率均為
1
2
,至少答對一題即可被聘用(假設(shè)每個環(huán)節(jié)的每個題目回答正確與否是相互獨(dú)立的)
(1)求該學(xué)生被公司聘用的概率;
(2)設(shè)該學(xué)生答對題目的個數(shù)為ξ,求ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某大學(xué)畢業(yè)生參加一個公司的招聘考試,考試分筆試和面試兩個環(huán)節(jié),筆試有A、B兩個題目,該學(xué)生答對A、B兩題的概率分別為
1
2
1
3
,兩題全部答對方可過入面試,面試要回答甲、乙兩個題目,該學(xué)生答對這兩個題目的概率均為
1
2
,至少答對一題即可被聘用(假設(shè)每個環(huán)節(jié)的每個題目回答正確與否是相互獨(dú)立的)
(1)求該學(xué)生沒有通過筆試的概率;
(2)求該學(xué)生被公司聘用的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年廣西桂林市高三第二次聯(lián)合調(diào)研考試?yán)砜茢?shù)學(xué)卷 題型:解答題

某大學(xué)畢業(yè)生參加一個公司的招聘考試,考試分筆試和面試兩個環(huán)節(jié),筆試有A、B兩個題目,該學(xué)生答對A、B兩題的概率分別為,兩題全部答對方可過入面試,面試要回答甲、乙兩個題目,該學(xué)生答對這兩個題目的概率均為,至少答對一題即可被聘用(假設(shè)每個環(huán)節(jié)的每個題目回答正確與否是相互獨(dú)立的)

    (1)求該學(xué)生被公司聘用的概率;

    (2)設(shè)該學(xué)生答對題目的個數(shù)為,求的分布列和數(shù)學(xué)期望.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年內(nèi)蒙古高三第一次月考理科數(shù)學(xué)卷 題型:解答題

(本小題滿分12分)

        某大學(xué)畢業(yè)生參加一個公司的招聘考試,考試分筆試和面試兩個環(huán)節(jié),筆試有A、B兩個題目,該學(xué)生答對A、B兩題的概率分別為、,兩題全部答對方可進(jìn)入面試.面試要回答甲、乙兩個問題,該學(xué)生答對這兩個問題的概率均為,至少答對一題即可被聘用(假設(shè)每個環(huán)節(jié)的每個問題回答正確與否是相互獨(dú)立的).

   (I)求該學(xué)生被公司聘用的概率;

   (II)設(shè)該學(xué)生答對題目的個數(shù)為,求的分布列和數(shù)學(xué)期望.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年云南省高三第一次月考理科數(shù)學(xué)卷 題型:解答題

(本小題滿分12分)

    某大學(xué)畢業(yè)生參加一個公司的招聘考試,考試分筆試和面試兩個環(huán)節(jié),筆試有AB兩個題目,該學(xué)生答對A、B兩題的概率分別為,兩題全部答對方可進(jìn)入面試.面試要回答甲、乙兩個問題,該學(xué)生答對這兩個問題的概率均為,至少答對一題即可被聘用(假設(shè)每個環(huán)節(jié)的每個問題回答正確與否是相互獨(dú)立的).

   (I)求該學(xué)生被公司聘用的概率;

   (II)設(shè)該學(xué)生答對題目的個數(shù)為,求的分布列和數(shù)學(xué)期望.

 

查看答案和解析>>

同步練習(xí)冊答案