本小題滿分15分)將數(shù)列中的所有項按每一行比上一行多一項的規(guī)則排成如下數(shù)表:

 
   
     
……
記表中的第一列數(shù)構成的數(shù)列為,為數(shù)列的前項和,且滿足
(Ⅰ)證明數(shù)列成等差數(shù)列,并求數(shù)列的通項公式;
(Ⅱ)上表中,若從第三行起,每一行中的數(shù)按從左到右的順序均構成等比數(shù)列,且公比為同一個正數(shù).當時,求上表中第行所有項的和.
(Ⅰ)
(Ⅱ)
(Ⅰ)證明:由已知,當時,,又,
所以
.所以數(shù)列是首項為1,公差為的等差數(shù)列.
由上可知
所以當時,
因此
(Ⅱ)解:設上表中從第三行起,每行的公比都為,且.因為
所以表中第1行至第12行共含有數(shù)列的前78項,故在表中第13行第三列,
因此.又,
所以.記表中第行所有項的和為
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知數(shù)列滿足,,數(shù)列的前和為.
(1)求數(shù)列的通項公式;
(2)設,求證:;
(3)求證:對任意的成立.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分12分)已知數(shù)列滿足
(1)  求數(shù)列的通項公式;
(2)  設,試推斷是否存在常數(shù)A、B、C,使對一切都有
成立?若存在,求出A、B、C的值;若不存在,說明理由;
(3)求的前n項和

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

數(shù)列的各項均為正數(shù),為其前項和,對于任意,總有成等差數(shù)列.
(1)求數(shù)列的通項公式; 
(2)設數(shù)列的前項和為,且,求證:對任意實數(shù)是常數(shù),和任意正整數(shù),總有
(3)正數(shù)數(shù)列中,求數(shù)列中的最大項.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

等差數(shù)列中,已知                                 (   )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

如下圖,第(1)個多邊形是由正三角形“擴展“而來,第(2)個多邊形是由正方形“擴展”而來,……,如此類推.設由正n邊形“擴展”而來的多邊形的邊數(shù)為,則            
           

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知數(shù)列滿足,,則   

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設公差為的等差數(shù)列,如果,那么(  )
A.B.61C.39D.72

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

數(shù)列中,恰好有5個,2個,則不相同的數(shù)列共有    個.

查看答案和解析>>

同步練習冊答案