14.如圖,將1,2,3,4任意排成2行2列的田字形數(shù)表.
(1)求對(duì)角線上數(shù)字之和相等的概率;
(2)設(shè)每行中的任意兩個(gè)數(shù)a,b(a>b)的比值為$\frac{a}$,記這兩個(gè)比值中的最小值為X,求X的分布列和數(shù)學(xué)期望.

分析 (1)求出將1,2,3,4任意排成2行2列的田字形數(shù)表的方法種數(shù),結(jié)合1+4=2+3求得對(duì)角線上數(shù)字之和相等的個(gè)數(shù),再由古典概型概率計(jì)算公式求解;
(2)由題意得到X的所有可能取值,分別求其概率,可得分布列,進(jìn)一步求得數(shù)學(xué)期望.

解答 解:(1)將1,2,3,4任意排成2行2列的田字形數(shù)表共有${A}_{4}^{4}=24$種不同排法.
∵1+4=2+3,∴對(duì)角線上數(shù)字之和相等共有$2{A}_{2}^{2}{A}_{2}^{2}=8$種.
∴對(duì)角線上數(shù)字之和相等的概率為$\frac{8}{24}=\frac{1}{3}$;
(2)X=$\frac{4}{3},\frac{3}{2},2$.
則P(x=$\frac{4}{3}$)=$\frac{1}{3}$,P(x=$\frac{3}{2}$)=$\frac{1}{3}$,P(x=2)=$\frac{1}{3}$.
故X的分布列為

 X $\frac{4}{3}$ $\frac{3}{2}$ 2
 p $\frac{1}{3}$ $\frac{1}{3}$ $\frac{1}{3}$
EX=$(\frac{4}{3}+\frac{3}{2}+2)×\frac{1}{3}=\frac{29}{18}$.

點(diǎn)評(píng) 本題考查離散型隨機(jī)變量的期望與方差,考查利用排列組合知識(shí)求古典概型的概率,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知P為拋物線x2=4y上一點(diǎn),F(xiàn)為其焦點(diǎn),以P為圓心,PF為半徑的圓與直線x=4相切,則P的坐標(biāo)(2,1)或(-6,9).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.以橢圓C:$\frac{y^2}{a^2}+\frac{x^2}{b^2}=1(a>b>0)$的中心O為圓心,以$\sqrt{\frac{ab}{2}}$為半徑的圓稱為該橢圓的“伴隨”.已知橢圓的離心率為$\frac{{\sqrt{3}}}{2}$,拋物線x2=8y的準(zhǔn)線過此橢圓的一個(gè)頂點(diǎn).
(Ⅰ) 求橢圓C及其“伴隨”的方程;
(Ⅱ)如果直線m:y=x-b與拋物線x2=8y交于M,N兩點(diǎn),且$\overrightarrow{OM}•\overrightarrow{ON}=0$,求實(shí)數(shù)b的值;
(Ⅲ) 過點(diǎn)P(0,m)作“伴隨”的切線l交橢圓C于A,B兩點(diǎn),記△A0B(0為坐標(biāo)原點(diǎn))的面積為S△A0B,將S△A0B表示為m的函數(shù),并求S△A0B的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.《九章算術(shù)》中,將底面為長(zhǎng)方形且有一條側(cè)棱與底面垂直的四棱錐稱之為陽馬,將四個(gè)面都為直角三角形的四面體稱之為鱉臑.
在如圖所示的陽馬P-ABCD中,側(cè)棱PD⊥底面ABCD,且PD=CD,點(diǎn)E是PC的
中點(diǎn),連接DE,BD,BE.
(Ⅰ)證明:DE⊥平面PBC.試判斷四面體EBCD是否為鱉臑,若是,寫出其每個(gè)面的直角(只需寫出結(jié)論);若不是,請(qǐng)說明理由;
(Ⅱ)記陽馬P-ABCD的體積為V1,四面體EBCD的體積為V2,求$\frac{{V}_{1}}{{V}_{2}}$的值.
(理科專用)(Ⅲ)若面DEF與面ABCD所成二面角的大小為$\frac{π}{3}$,求$\frac{DC}{BC}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知隨機(jī)變量X的分布列為P(X=i)=$\frac{i}{2a}$(i=1,2,3),則a=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如圖,在底面是矩形的四棱錐P-ABCD中,PA⊥平面ABCD,PA=AB=2,BC=4,E是PD的中點(diǎn).
(1)求證:平面PDC⊥平面PAD;
(2)求證:PB∥平面EAC;
(3)求直線EC與平面ABCD所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.隨機(jī)變量ξ的概率分布列為P(ξ=n)=a($\frac{4}{5}$)n(n=0.1.2),其中a為常數(shù),則P(0.1<ξ<2.9)的值為(  )
A.$\frac{16}{25}$.B.$\frac{9}{16}$C.$\frac{36}{61}$D.$\frac{20}{61}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知四棱錐P-ABCD的底面為直角梯形,AB∥DC,∠DAB=90°,PA⊥底面ABCD,且PA=AD=DC=$\frac{1}{2}$,AB=1,M是PB的中點(diǎn).N是AB的中點(diǎn).
(1)證明:面PAD∥面MNC;
(2)證明:面PAD⊥面PCD;
(3)求PC與面PAD所成的角的正切;
(4)求二面角M-AC-B的正切.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=x2+aln(x+1),其中a≠0
(1)若a=-4,求f(x)的極值;
(2)判斷函數(shù)f(x)的單調(diào)性.

查看答案和解析>>

同步練習(xí)冊(cè)答案