分析 (1)通過證明PA⊥CD.AD⊥CD,證明CD⊥平面PAD,即可證明平面PDC⊥平面PAD;
(2)證明PB∥EO,即可證明PB∥平面EAC;
(3)設AD的中點為G,連結(jié)EG,CG,說明∠ECG為EC與平面ABCD所成的角,在直角三角形ECG中,求解即可.
解答 (1)證明:∵PA⊥平面ABCD,CD?平面ABCD,∴PA⊥CD.
又∵四邊形ABCD是矩形,∴AD⊥CD.…(2分)
又PA∩AD=A,PA,AD?平面PAD,∴CD⊥平面PAD.
又∵CD?平面PDC,∴平面PDC⊥平面PAD.…(4分)
(2)連結(jié)BD交AC于O,連結(jié)OE,
因為E、O分別是PD、BD的中點,
所以PB∥EO,EO?平面EAC,
所以PB∥平面EAC…(7分)
(3)設AD的中點為G,連結(jié)EG,CG,
因為E、G分別是PD、AD的中點,
所以PA∥EG,∵PA⊥平面ABCD,
∴EG⊥平面ABCD,
∴∠ECG為EC與平面ABCD所成的角.…(9分)
在直角三角形ECG中,EG=$\frac{1}{2}$PA=1,CG=$\sqrt{D{G}^{2}+D{C}^{2}}$=2$\sqrt{2}$.
所以tan∠ECG=$\frac{EG}{CG}=\frac{1}{2\sqrt{2}}=\frac{\sqrt{2}}{4}$,即所求的正切值為$\frac{\sqrt{2}}{4}$…(12分)
點評 本題考查直線與平面垂直,直線與平面平行的判定定理以及直線與平面市場價的求法,考查計算能力以及空間想象能力.
科目:高中數(shù)學 來源: 題型:選擇題
A. | y=-$\frac{1}{x}$ | B. | y=-log2x | C. | y=3x | D. | y=x3 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com