3.若(2-ax)(1+x)4展開式中x3的系數(shù)為2,則a=( 。
A.1B.-1C.-$\frac{1}{3}$D.2

分析 利用(1+x)4=1+4x+6x2+4x3+x4,(2-ax)(1+x)4展開式中x3的系數(shù)為2,列出方程求出a.

解答 解:∵(1+x)4=1+4x+6x2+4x3+x4,(2-ax)(1+x)4展開式中x3的系數(shù)為2,
∴8-6a=2
解得a=1,
故選:A.

點評 本題考查利用二項展開式的通項公式解決二項展開式的特定項問題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如圖所示,在四棱柱ABCD-A1B1C1D1中,底面ABCD是梯形,AD∥BC,側(cè)面ABB1A1為菱形,∠DAB=∠DAA1
(Ⅰ)求證:A1B⊥AD;
(Ⅱ)若AD=AB=2BC,∠A1AB=60°,點D在平面ABB1A1上的射影恰為線段A1B的中點,求平面DCC1D1與平面ABB1A1所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}-6x+6,x≥0}\\{x+4,x<0}\end{array}\right.$,若存在互不相等的實數(shù)x1,x2,x3滿足f(x1)=f(x2)=f(x3),則x1+x2+x3的取值范圍(-1,6).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.在△ABC中,角A,B,C的對邊分別為a,b,c,若bsin$\frac{A}{2}$cos$\frac{A}{2}$=acos$\frac{π}{6}$cosB,則B=( 。
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知關(guān)于x的不等式ax2-(a+1)x+1<0.
(1)若a=-3,求不等式的解集;
(2)若a∈R,求不等式的解集;
(3)若不等式解集中恰有4個整數(shù)解,求a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知集合A=$\left\{{1,2,\frac{1}{2}}\right\}$,集合B={y|y=x2,x∈A},則A∩B={1}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知直線l的一個法向量是$\overrightarrow n=({1,-\sqrt{3}})$,則此直線的傾斜角的大小為$\frac{π}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.在△ABC中,角A、B、C所對的邊分別是a、b、c,已知cos$\frac{C}{2}$=$\frac{\sqrt{5}}{3}$.
(1)求cosC的值;
(2)若acosB+bcosA=2,a=$\frac{\sqrt{5}}{2}$,求sinA的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知數(shù)列{an}滿足:a1=$\frac{1}{4}$,3an+1-2an=1(n∈N*);數(shù)列{bn}滿足:bn=an+1-an(n∈N*).
(1)求數(shù)列{an}的通項公式及其前n項和Sn
(2)證明:數(shù)列{bn}中的任意三項不可能成等差數(shù)列.

查看答案和解析>>

同步練習(xí)冊答案