分析 從1開始驗(yàn)證,利用復(fù)數(shù)的運(yùn)算法則即可得出.
解答 解:當(dāng)n=1時(shí),Z=1+i,不是實(shí)數(shù);
當(dāng)n=2時(shí),Z=1+i2=1-1=0,不是正實(shí)數(shù);
當(dāng)n=3時(shí),Z=1+i3=1-i=0,不是實(shí)數(shù);
當(dāng)n=4時(shí),Z=1+i4=1+1=2,是正實(shí)數(shù).
綜上可得:使Z=1+in(n∈N*)是正實(shí)數(shù)的最小正整數(shù)n為4.
故答案為:4.
點(diǎn)評(píng) 本題考查了復(fù)數(shù)的運(yùn)算法則,考查了計(jì)算能力,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 最小正周期為$\frac{π}{2}$的偶函數(shù) | B. | 最小正周期為$\frac{π}{2}$的奇函數(shù) | ||
C. | 最小正周期為π的偶函數(shù) | D. | 最小正周期為π的奇函數(shù) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
ξ | -1 | 0 | 1 |
P | 0.5 | 1-$\frac{3q}{2}$ | q2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 命題“若x2=1,則x=1”的否命題為“若x2=1,則x≠1” | |
B. | “x=-1”是“x2-5x-6=0”的必要不充分條件 | |
C. | 命題“?x0∈R,使得x02+x0+1<0”的否定是:“?x∈R,均有x2+x+1>0” | |
D. | 若命題p:?x0∈R,tanx0=1;命題q:?x∈R,x2-x+1>0,則命題“p且q”是真命題 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com