【題目】選修4—1:幾何證明選講
如圖,已知圓是的外接圓, ,是邊上的高,是圓的直徑,過點(diǎn)作圓的切線交的延長(zhǎng)線于點(diǎn).
(Ⅰ)求證:;
(Ⅱ)若,求的長(zhǎng).
【答案】(1)詳見解析;(2)
【解析】
試題分析:(I)如圖所示,連接BE.由于AE是⊙O的直徑,可得∠ABE=90°.利用∠E與∠ACB都是弧AB所對(duì)的圓周角,可得∠E=∠ACB.進(jìn)而得到△ABE∽△ADC,即可得到.(II)利用切割線定理可得,可得BF.再利用△AFC∽△CFB,可得,進(jìn)而根據(jù)sin∠ACD=sin∠AEB,,即可得出答案.
試題解析: (Ⅰ)證明:連結(jié),由題意知為直角三角形
因?yàn)?/span>,,
所以
即
又,所以
(Ⅱ)因?yàn)?/span>是圓的切線,所以,
又,所以,
因?yàn)?/span>,所以
所以,得,
所以
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù).
(Ⅰ)求曲線在點(diǎn)處的切線方程;
(Ⅱ)若對(duì)恒成立,求實(shí)數(shù)的取值范圍;
(Ⅲ)求整數(shù)的值,使函數(shù)在區(qū)間上有零點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】水是萬(wàn)物之本、生命之源,節(jié)約用水,從我做起.我國(guó)是世界上嚴(yán)重缺水的國(guó)家,某市政府為了鼓勵(lì)居民節(jié)約用水,計(jì)劃調(diào)整居民生活用水收費(fèi)方案,擬確定一個(gè)合理的月用水量標(biāo)準(zhǔn)(噸)、一位居民的月用水量不超過的部分按平價(jià)收費(fèi),超出的部分按議價(jià)收費(fèi).為了了解居民用水情況,通過抽樣,獲得了某年100位居民每人的月均用水量(單位:噸),將數(shù)據(jù)按照[0,0.5),[0.5,1),…,[4,4.5)分成9組,制成了如圖所示的頻率分布直方圖.(1)求直方圖中a的值;(2)設(shè)該市有30萬(wàn)居民,估計(jì)全市居民中月均用水量不低于3噸的人數(shù),并說(shuō)明理由;(3)若該市政府希望使85%的居民每月的用水量不超過標(biāo)準(zhǔn)(噸),估計(jì)的值,并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線的焦點(diǎn)為,為上異于原點(diǎn)的任意一點(diǎn),過點(diǎn)的直線交于另一點(diǎn),交軸的正半軸于點(diǎn),且有.當(dāng)點(diǎn)的橫坐標(biāo)為3時(shí),為正三角形.
(1)求的方程;
(2)延長(zhǎng)交拋物線于點(diǎn),過點(diǎn)作拋物線的切線,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,五面體中,,底面是正三角形,,四邊形是矩形,二面角為直二面角.
(1)在上運(yùn)動(dòng),當(dāng)在何處時(shí),有平面,并說(shuō)明理由;
(2)當(dāng)平面時(shí),求二面角余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,底面為平行四邊形, 為側(cè)棱的中點(diǎn).
(Ⅰ)求證: ∥平面
(Ⅱ)若,,
求證:平面平面
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了完成對(duì)某城市的工薪階層是否贊成調(diào)整個(gè)人所得稅稅率的調(diào)查,隨機(jī)抽取了60人,作出了他們的月收入頻率分布直方圖(如圖),同時(shí)得到了他們?cè)率杖肭闆r與贊成人數(shù)統(tǒng)計(jì)表(如下表):
(1)試根據(jù)頻率分布直方圖估計(jì)這60人的平均月收入;
(2)若從月收入(單位:百元)在[65,75)的被調(diào)查者中隨機(jī)選取2人進(jìn)行追蹤調(diào)查,求2人都不贊成的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知冪函數(shù)為偶函數(shù),且在區(qū)間上是單調(diào)遞增函數(shù)。
(Ⅰ)求函數(shù)的解析式;
(Ⅱ)設(shè),若能取遍內(nèi)的所有實(shí)數(shù),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校為加強(qiáng)學(xué)生的交通安全教育,對(duì)學(xué)校旁邊,兩個(gè)路口進(jìn)行了8天的檢測(cè)調(diào)查,得到每天各路口不按交通規(guī)則過馬路的學(xué)生人數(shù)(如莖葉圖所示),且路口數(shù)據(jù)的平均數(shù)比路口數(shù)據(jù)的平均數(shù)小2.
(1)求出路口8個(gè)數(shù)據(jù)中的中位數(shù)和莖葉圖中的值;
(2)在路口的數(shù)據(jù)中任取大于35的2個(gè)數(shù)據(jù),求所抽取的兩個(gè)數(shù)據(jù)中至少有一個(gè)不小于40的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com