設函數(shù)f(x)=
1
3
x3-ax2-3a2x+1(a>0)

(I)求f′(x)的表達式;
(Ⅱ)求函數(shù)f(x)的單調區(qū)間、極大值和極小值;
(Ⅲ)若x∈[a+1,a+2]時,恒有f′(x)>-3a,求實數(shù)a的取值范圍.
(I)f'(x)=x2-2ax-3a2.(3分)
(Ⅱ)令f'(x)=x2-2ax-3a2=0,得x=-a或x=3a.(5分)
則當x變化時,f(x)與f'(x)的變化情況如下表:

可知:當x∈(-∞,-a)時,函數(shù)f(x)為增函數(shù),當x∈(3a,+∞)時,函數(shù)f(x)也為增函數(shù).(6分)
當x∈(-a,3a)時,函數(shù)f(x)為減函數(shù).(7分)當x=-a時,f(x)的極大值為
5
3
a3+1
;(8分)
當x=3a時,f(x)的極小值為-9a3+1.(9分)
(Ⅲ)因為f'(x)=x2-2ax-3a2的對稱軸為x=a,
且其圖象的開口向上,所以f'(x)在區(qū)間[a+1,a+2]上是增函數(shù).(10分)
則在區(qū)間[a+1,a+2]上恒有f'(x)>-3a等價于f'(x)的最小值大于-3a成立.
所以f'(a+1)=(a+1)2-2a(a+1)-3a2=-4a2+1>-3a.(12分)
解得-
1
4
<a<1
.又a>0,故a的取值范圍是(0,1)
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題16分) 設函數(shù),且,其中是自然對數(shù)的底數(shù).(1)求的關系;(2)若在其定義域內(nèi)為單調函數(shù),求的取值范圍;
(3)設,若在上至少存在一點,使得成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

數(shù)列{an}是公差為d的等差數(shù)列,函數(shù)f(x)=(x-a1)(x-a2)(x-a3)(x-a4),則f′(a1)+f′(a2)+f′(a3)+f′(a4)=______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知函數(shù)f(x)=ax3+3x2+2,若f′(-1)=4,則a的值是(  )
A.
19
3
B.
13
3
C.
10
3
D.
16
3

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知函數(shù)y=f(x)是定義在實數(shù)集R上的奇函數(shù),f′(x)是f(x)的導函數(shù),且當x>0,f(x)+xf′(x)>0,設a=(log
1
2
4)f(log
1
2
4),b=
2
f(
2
),c=(lg
1
5
)f(lg
1
5
),則a,b,c的大小關系是(  )
A.c>a>bB.c>b>aC.a(chǎn)>b>cD.a(chǎn)>c>b

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知函數(shù)f(x)在R上可導,且f(x)=x2+2xf′(2),則函數(shù)f(x)的解析式為(  )
A.f(x)=x2+8xB.f(x)=x2-8xC.f(x)=x2+2xD.f(x)=x2-2x

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若f′(x)=2ex+xex(其中e為自然對數(shù)的底數(shù)),則f(x)可以是( 。
A.xex+xB.(x+1)ex+1C.xexD.(x+1)ex+x

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知在R上開導,且,若,則不等式的解集為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

函數(shù)y=x(x-
1
x2
)
的導數(shù)為( 。
A.x+
1
x2
B.x-
1
x
C.2x+
1
x2
D.2x-
1
x2

查看答案和解析>>

同步練習冊答案