求函數(shù)y=sin2x+2sinxcosx+3cos2x的最大值.
分析:先根據(jù)同角三角函數(shù)的基本關(guān)系、根據(jù)二倍角公式和兩角和與差的正弦公式化簡為y=Asin(wx+ρ)+b的形式,即可得到答案.
解答:解:y=sin2x+2sinxcosx+3cos2x
=(sin2x+cos2x)+2sinxcosx+2cos2x
=1+sin2x+(1+cos2x)
=2+sin2x+cos2x
=2+
2
sin(2x+
π
4
).
當(dāng)sin(2x+
π
4
)=1時,函數(shù)y有最大值,這時y的最大值等于2+
2
點評:本題主要考查二倍角公式和兩角和與差的正弦公式.屬基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

求函數(shù)y=sin2x+acosx+a2的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求函數(shù)y=sin2x+2sinxcosx+3cos2x的最小值,并寫出使函數(shù)y取最小值的x的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求函數(shù)y=
sin2x+3cosx-4cosx-2
的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求函數(shù)y=sin2x-2sinx+2cosx的最大值和最小值,并指出當(dāng)x取何值時,函數(shù)取得最值.

查看答案和解析>>

同步練習(xí)冊答案