奇函數(shù)f(x)在(0,+∞)上的解析式為f(x)=x(1-x),則在(-∞,0)上的解析式為(  )
A、f(x)=x(1-x)
B、f(x)=x(x-1)
C、f(x)=x(1+x)
D、f(x)=-(1+x)
考點:函數(shù)解析式的求解及常用方法
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:設(shè)x∈(-∞,0),則可得-x∈(0,+∞),帶入在(0,+∞)上的解析式f(x)=x(1-x),再用奇函數(shù)求解.
解答: 解:設(shè)x∈(-∞,0),則-x∈(0,+∞),
又∵函數(shù)f(x)在(0,+∞)上的解析式為f(x)=x(1-x),
∴f(-x)=-x(1+x),
又∵函數(shù)f(x)為奇函數(shù),∴f(-x)=-f(x),
∴f(x)=-f(-x)=x(1+x),
故選:C
點評:本題主要考查函數(shù)的性質(zhì),特別是函數(shù)的奇偶性,利用原點兩側(cè)的關(guān)系解題是關(guān)鍵,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知R上的函數(shù)y=f(x),其周期為2,且x∈(-1,1]時f(x)=1+x2,函數(shù)g(x)=
1+sinπx(x>0)
1-
1
x
(x<0)
,則函數(shù)h(x)=f(x)-g(x)在區(qū)間[-5,5]上的零點的個數(shù)為( 。
A、11B、10C、9D、8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a>0且a≠1,函數(shù)f (x)=
(a-1)x+3a-4,x≤0
ax,x>0
,滿足對任意實數(shù)x1≠x2,都有
f(x1)-f(x2)
x2-x1
<0成立,則a的取值范圍是( 。
A、(0,1)
B、(1,+∞)
C、(1,
5
3
]
D、[
5
3
,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是定義在R上的可導(dǎo)函數(shù),f(x)+f′(x)>0,且f(1)=0.則不等式f(x)>0的解集是( 。
A、(0,+∞)
B、(0,1)
C、(1,+∞)
D、(-∞,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合P={1,2,3,4,5},Q={3,4,5,6,7}.則P∩Q=( 。
A、{1,2}
B、{3,4,5}
C、{1,2,6,7}
D、{1,2,3,4,5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=3sin(
1
2
x+
π
4
)-1,x∈R,求:
(1)函數(shù)f(x)的最小值及此時自變量x的取值集合;
(2)函數(shù)y=sinx的圖象經(jīng)過怎樣的變換得到函數(shù)f(x)=3sin(
1
2
x+
π
4
)-1的圖象?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
7x-3
x2+2x-3
=
A
x-1
+
B
x+3
,則2A+3B=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若(a+bi)i=1+2i(其中i為虛數(shù)單位,a,b∈R),則a-b=( 。
A、-3B、3C、-1D、l

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若a>0>b,則下列不等式中成立的是(  )
A、
1
a
1
b
B、
1
a-b
1
a
C、|a|>|b|
D、a2>b2

查看答案和解析>>

同步練習(xí)冊答案