公差不為0的等差數(shù)列{an}的前n項(xiàng)和為Sn,下列選項(xiàng)不可能是(n,Sn)的圖象的是( 。
A、
B、
C、
D、
考點(diǎn):等差數(shù)列的前n項(xiàng)和
專題:等差數(shù)列與等比數(shù)列
分析:等差數(shù)列{an}的前n項(xiàng)和為Sn是不包常數(shù)項(xiàng)的二次函數(shù),由此能求出結(jié)果.
解答: 解:∵等差數(shù)列{an}的前n項(xiàng)和為Sn是不包常數(shù)項(xiàng)的二次函數(shù),
∴(n,Sn)的圖象近似于拋物線,
∴選項(xiàng)A不可能是(n,Sn)的圖象.
故選:A.
點(diǎn)評(píng):本題考查等差數(shù)列的前n項(xiàng)和的性質(zhì)的應(yīng)用,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下列命題是真命題的是( 。
A、?x∈R,x>0
B、?x∈R,x02+2x0+3=0
C、有的三角形是正三角形
D、每一個(gè)四邊形都有外接圓

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

sin(
π
6
+α)=
1
3
,則cos(
π
3
-α)的值為(  )
A、
1
2
B、-
1
2
C、
1
3
D、-
1
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對(duì)?x1∈[1,2],?x2∈[2,3]總有2ax12-x22+2x1x2+4x12(lnx2-lnx1)≥0成立,則實(shí)數(shù)a的取值范圍( 。
A、[-
1
2
,+∞)
B、(-∞,
1
2
]
C、[-
1
2
,
3
2
-2ln3]
D、[
3
2
-2ln3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=1+
4-x2
(-2≤x≤2)與函數(shù)g(x)=m(x-2)+4.若函數(shù)h(x)=f(x)-g(x)有兩個(gè)零點(diǎn)時(shí),參數(shù)m的取值范圍為( 。
A、[
1
2
,
2
3
]
B、(-
1
2
,
2
3
C、[
5
12
,
3
4
]
D、(
5
12
,
3
4
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若x∈R,則|x|<4成立的一個(gè)必要不充分條件是( 。
A、-3<x<3
B、0<x<2
C、x<4
D、x2<16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}中,若a1=1,an+1=an+4,則下列各數(shù)中是{an}中某一項(xiàng)的是( 。
A、2007B、2008
C、2009D、2010

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)是定義在R上的奇函數(shù),且對(duì)?a,b∈R,當(dāng)a+b≠0時(shí),都有
f(a)+f(b)
a+b
>0.
(1)若a>b,試比較f(a)與f(b)的大小關(guān)系;
(2)若f(1+m)+f(3-2m)≥0,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2-2x-3,若x∈[t,t+2],求函數(shù)f(x)的最值.

查看答案和解析>>

同步練習(xí)冊(cè)答案