如圖,四棱錐P-ABCD中,PA⊥平面ABCD,E為BD的中點(diǎn),G為PD的中點(diǎn),△DAB≌△DCB,EA=EB=AB=1,PA=,連接CE并延長交AD于F
(1)求證:AD⊥平面CFG;
(2)求平面BCP與平面DCP的夾角的余弦值.
【答案】分析:(1)利用直角三角形的判定得到∠BAD=,且∠ABE=∠AEB=.由△DAB≌△DCB得到△EAB≌△ECB,從而得到∠FED=∠FEA=,所以EF⊥AD且AF=FD,結(jié)合題意得到FG是△PAD是的中位線,可得FG∥PA,根據(jù)PA⊥平面ABCD得FG⊥平面ABCD,得到FG⊥AD,最后根據(jù)線面垂直的判定定理證出AD⊥平面CFG;
(2)以點(diǎn)A為原點(diǎn),AB、AD、PA分別為x軸、y軸、z軸建立如圖直角坐標(biāo)系,得到A、B、C、D、P的坐標(biāo),從而得到、的坐標(biāo),利用垂直向量數(shù)量積為零的方法建立方程組,解出=(1,-)和=(1,,2)分別為平面BCP、平面DCP的法向量,利用空間向量的夾角公式算出夾角的余弦,即可得到平面BCP與平面DCP的夾角的余弦值.
解答:解:(1)∵在△DAB中,E為BD的中點(diǎn),EA=EB=AB=1,
∴AE=BD,可得∠BAD=,且∠ABE=∠AEB=
∵△DAB≌△DCB,∴△EAB≌△ECB,從而得到∠FED=∠BEC=∠AEB=
∴∠FED=∠FEA=,可得EF⊥AD,AF=FD
又∵△PAD中,PG=GD,∴FG是△PAD是的中位線,可得FG∥PA
∵PA⊥平面ABCD,∴FG⊥平面ABCD,
∵AD?平面ABCD,∴FG⊥AD
又∵EF、FG是平面CFG內(nèi)的相交直線,∴AD⊥平面CFG;
(2)以點(diǎn)A為原點(diǎn),AB、AD、PA分別為x軸、y軸、z軸建立如圖直角坐標(biāo)系,可得
A(0,0,0),B(1,0,0),C(,0),D(0,,0),P(0,0,
=(,,0),=(-,-),=(-,0)
設(shè)平面BCP的法向量=(1,y1,z1),則
解得y1=-,z1=,可得=(1,-,),
設(shè)平面DCP的法向量=(1,y2,z2),則
解得y2=,z2=2,可得=(1,,2),
∴cos<,>===
因此平面BCP與平面DCP的夾角的余弦值等于|cos<,>|=
點(diǎn)評:本題在三棱錐中求證線面垂直,并求平面與平面所成角的余弦值.著重考查了空間線面垂直的判定與性質(zhì),考查了利用空間向量研究平面與平面所成角等知識,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四棱錐P-ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,
E是PC的中點(diǎn).求證:
(Ⅰ)CD⊥AE;
(Ⅱ)PD⊥平面ABE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四棱錐P-ABCD中,底面ABCD是直角梯形,AB∥CD,∠DAB=60°,AB=AD=2CD=2,側(cè)面PAD⊥底面ABCD,且△PAD為等腰直角三角形,∠APD=90°,M為AP的中點(diǎn).
(1)求證:AD⊥PB;
(2)求三棱錐P-MBD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四棱錐P-ABCD的底面ABCD是矩形,AB=2,BC=
2
,且側(cè)面PAB是正三角形,平面PAB⊥平面ABCD.
(1)求證:PD⊥AC;
(2)在棱PA上是否存在一點(diǎn)E,使得二面角E-BD-A的大小為45°,若存在,試求
AE
AP
的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四棱錐P-ABCD中,底面ABCD為矩形,PA⊥底面ABCD,且PA=AB=1,AD=
3
,點(diǎn)F是PB中點(diǎn).
(Ⅰ)若E為BC中點(diǎn),證明:EF∥平面PAC;
(Ⅱ)若E是BC邊上任一點(diǎn),證明:PE⊥AF;
(Ⅲ)若BE=
3
3
,求直線PA與平面PDE所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四棱錐P-ABCD,PA⊥平面ABCD,ABCD是直角梯形,DA⊥AB,CB⊥AB,PA=2AD=BC=2,AB=2
2
,設(shè)PC與AD的夾角為θ.
(1)求點(diǎn)A到平面PBD的距離;
(2)求θ的大。划(dāng)平面ABCD內(nèi)有一個動點(diǎn)Q始終滿足PQ與AD的夾角為θ,求動點(diǎn)Q的軌跡方程.

查看答案和解析>>

同步練習(xí)冊答案