(12分)已知函數(shù),曲線過點(diǎn)P(-1,2),且在點(diǎn)P處的切線恰好與直線x-3y=0垂直。
①求a,b的值;
②求該函數(shù)的單調(diào)區(qū)間和極值。
③若函數(shù)在上是增函數(shù),求m的取值范圍.
解:① a=1,b=3②函數(shù)的遞增區(qū)間是(-∞,-2)和(0,+∞),遞減區(qū)間是(-2,0),
極大值是f(-2)=4,極小值是f(0)=0.③ m≤-3,或m≥0.
解析試題分析:(1)將M的坐標(biāo)代入f(x)的解析式,得到關(guān)于a,b的一個(gè)等式;求出導(dǎo)函數(shù),求出f′(1)即切線的斜率,利用垂直的兩直線的斜率之積為-1,列出關(guān)于a,b的另一個(gè)等式,解方程組,求出a,b的值.
(2)求出 f′(x),令f′(x)>0,求出函數(shù)的單調(diào)遞增區(qū)間
(3)在上一問的基礎(chǔ)上,據(jù)題意知[m,m+1]⊆(-∝,-2]∪[0,+∝),列出端點(diǎn)的大小,求出m的范圍.
解:① 因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/a9/6/onvoi1.png" style="vertical-align:middle;" />,所以,
根據(jù)題意得 -a+b=2 ,得 a=1,b=3
3a-2b=-3
② ,
當(dāng)>0時(shí),解得 x<-2,或x>0;
當(dāng)<0時(shí),解得 -2<x<0.
因此,該函數(shù)的遞增區(qū)間是(-∞,-2)和(0,+∞),遞減區(qū)間是(-2,0),
極大值是f(-2)=4,極小值是f(0)=0.
③ 根據(jù)題意m+1≤-2,或m≥0,解得m≤-3,或m≥0.
考點(diǎn):本試題主要考查了導(dǎo)數(shù)在研究函數(shù)中的運(yùn)用。
點(diǎn)評(píng):解決該試題注意函數(shù)在切點(diǎn)處的導(dǎo)數(shù)值是曲線的切線斜率;直線垂直的充要條件是斜率之積為-1。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)=(為自然對(duì)數(shù)的底數(shù)),,記.
(1)為的導(dǎo)函數(shù),判斷函數(shù)的單調(diào)性,并加以證明;
(2)若函數(shù)=0有兩個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分16分)
已知函數(shù).
(1)若x=2是函數(shù)f(x)的極值點(diǎn),求實(shí)數(shù)a的值.
(2)若函數(shù)在上是增函數(shù),求實(shí)數(shù)的取值范圍;
(3)若函數(shù)在上的最小值為3,求實(shí)數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
設(shè)函數(shù)在及時(shí)取得極值.
(I)求的值;
(II)若對(duì)于任意的,都有成立,求c的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(12分)已知函數(shù),曲線在點(diǎn)處的切線方程為。
(1)求,的值;
(2)如果當(dāng),且時(shí),,求的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分12分)已知函數(shù)的圖象過點(diǎn),且在點(diǎn)處的切線方程為.
(Ⅰ)求函數(shù)的解析式;(Ⅱ)求函數(shù)的單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)已知函數(shù)=,.
(1)求函數(shù)在區(qū)間上的值域;
(2)是否存在實(shí)數(shù),對(duì)任意給定的,在區(qū)間上都存在兩個(gè)不同的,使得成立.若存在,求出的取值范圍;若不存在,請(qǐng)說明理由.
(3)給出如下定義:對(duì)于函數(shù)圖象上任意不同的兩點(diǎn),如果對(duì)于函數(shù)圖象上的點(diǎn)(其中總能使得成立,則稱函數(shù)具備性質(zhì)“”,試判斷函數(shù)是不是具備性質(zhì)“”,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
已知函數(shù) (R).
(1) 若,求函數(shù)的極值;
(2)是否存在實(shí)數(shù)使得函數(shù)在區(qū)間上有兩個(gè)零點(diǎn),若存在,求出的取值范圍;若不存在,說明理由。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com