設(shè)函數(shù)=(為自然對數(shù)的底數(shù)),,記.
(1)為的導(dǎo)函數(shù),判斷函數(shù)的單調(diào)性,并加以證明;
(2)若函數(shù)=0有兩個零點,求實數(shù)的取值范圍.
(1)在上單調(diào)遞增.(2)實數(shù)a的取值范圍是(0,2)。
解析試題分析:(1),∴,
令,則,
∴在上單調(diào)遞增,即在上單調(diào)遞增.
(2)由(1)知在上單調(diào)遞增,而,
∴有唯一解,
的變化情況如下表所示:x 0 - 0 + 遞減 極小值 遞增
又∵函數(shù)有兩個零點,
∴方程有兩個根,即方程有兩個根
而,,
解得.
所以,若函數(shù)有兩個零點,實數(shù)a的取值范圍是(0,2)
考點:本題主要考查了導(dǎo)數(shù)的運算,導(dǎo)數(shù)在函數(shù)單調(diào)性中的應(yīng)用,函數(shù)零點。
點評:中檔題,利用導(dǎo)數(shù)研究函數(shù)單調(diào)區(qū)間,進一步判斷函數(shù)零點情況,提供了解答此類問題的一般方法。
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)f(x)=a ln x++x+1,其中a∈R,曲線y=f(x)在點(1,f(1))處的切線垂直于y軸.(1)求a的值;(2)求函數(shù)f(x)的極值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
(Ⅰ)當(dāng)a=1時,求函數(shù)在區(qū)間上的最小值和最大值;
(Ⅱ)若函數(shù)在區(qū)間上是增函數(shù),求實數(shù)a的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
設(shè)函數(shù).
(Ⅰ)若曲線在點處與直線相切,求的值;
(Ⅱ)求函數(shù)的極值點與極值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(滿分12分)設(shè)函數(shù)。
(Ⅰ)若在定義域內(nèi)存在,而使得不等式能成立,求實數(shù)的最小值;
(Ⅱ)若函數(shù)在區(qū)間上恰有兩個不同的零點,求實數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)
(1)若a>0,求函數(shù)的最小值;
(2)若a是從1,2,3三個數(shù)中任取一個數(shù),b是從2,3,4,5四個數(shù)中任取一個數(shù),求f (x)>b恒成立的概率。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)已知函數(shù)
(Ⅰ)若函數(shù)在上為增函數(shù),求正實數(shù)的取值范圍;
(Ⅱ)設(shè),求證:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(12分)已知函數(shù),曲線過點P(-1,2),且在點P處的切線恰好與直線x-3y=0垂直。
①求a,b的值;
②求該函數(shù)的單調(diào)區(qū)間和極值。
③若函數(shù)在上是增函數(shù),求m的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com